Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):o924. doi: 10.1107/S1600536808011586

2-[1-(4-Ethoxy­phen­yl)-2-oxo-4-styryl­azetidin-3-yl]isoindoline-1,3-dione

Mehmet Akkurt a,*, Selvi Karaca a, Ali Asghar Jarrahpour b, Maaroof Zarei b, Orhan Büyükgüngör c
PMCID: PMC2961093  PMID: 21202405

Abstract

The title compound, C27H22N2O4, contains a nearly planar four-membered β-lactam ring, which makes dihedral angles of 74.64 (12), 1.70 (11) and 73.67 (12)° with the nine-membered ring system, the benzene ring and the phenyl ring, respectively. The crystal structure is stabilized by C—H⋯O and C—H⋯π inter­actions and a π–π inter­action [centroid–centroid distance = 3.4505 (19) Å] is also present.

Related literature

For related structures, see: Pınar et al. (2006); Akkurt et al. (2007). For background, see: Halve et al. (2007); Aoyama et al. (2001). For related literature, see: Jarrahpour & Zarei (2007).graphic file with name e-64-0o924-scheme1.jpg

Experimental

Crystal data

  • C27H22N2O4

  • M r = 438.47

  • Monoclinic, Inline graphic

  • a = 33.7560 (17) Å

  • b = 7.0403 (2) Å

  • c = 31.0482 (17) Å

  • β = 140.454 (3)°

  • V = 4698.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.53 × 0.45 × 0.14 mm

Data collection

  • Stoe IPDS-2 diffractometer

  • Absorption correction: none

  • 22562 measured reflections

  • 4934 independent reflections

  • 3071 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.099

  • S = 0.96

  • 4934 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011586/hb2715sup1.cif

e-64-0o924-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011586/hb2715Isup2.hkl

e-64-0o924-Isup2.hkl (236.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.53 3.283 (3) 138
C5—H5⋯O3ii 0.93 2.47 3.257 (3) 142
C13—H13⋯O3 0.93 2.53 3.139 (2) 123
C20—H20⋯O2iii 0.93 2.51 3.374 (2) 156
C9—H9⋯Cg1iv 0.98 2.84 3.7938 (16) 166
C19—H19CCg2v 0.96 2.82 3.633 (4) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg1 is the centroid of atoms C12–C17 and Cg2 is the centroid of atoms C2–C7.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

The 2-azetidinone ring system is the common structural feature of a number of broad spectrum β-lactam antibiotics (Halve et al., 2007) and also possesses other pharmalogical properties (Aoyama et al., 2001). As part of our onging studies of such materials (Pınar et al., 2006; Akkurt et al., 2007), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The four-membered β-lactam ring in (I) is nearly planar, with maximum deviations of 0.022 (1) Å for N2 and -0.021 (2) Å for C10. Within the lactam ring, the bond lengths are similar to those observed in our previous studies (Pınar et al., 2006; Akkurt et al., 2007).

The four-membered β-lactam ring (N2/C9–C11) in (I) makes dihedral angles of 74.64 (12), 1.70 (11) and 73.67 (12)° with the nine-membered ring system (A: N1/C1–C8) {max. deviations from planarity = 0.048 (2) for N1 and -0.029 (3) Å for C2 and C7}, the benzene ring (B: C12–C17) and the phenyl ring (C: C22–C27), respectively. The other dihedral angles are A/B = 74.74 (9), A/C = 55.97 (11) and B/C = 74.84 (10)°. The sum of the bond angles about atom N2 is 360.0°.

The packing and hydrogen bonding of the title compound is shown in Fig. 2. The crystal structure is stabilized by inter- and intramolecular C—H···O interactions and C—H···π contacts (Table 1). Finally, an aromatic π—π stacking interaction {Cg3···Cg2(1 – x, 2 – y,1 – z) = 3.4505 (19)Å, where Cg3 is the centroid of the N1/C1/C2/C7/C8 five-membered ring} is observed in the crystal structure.

Experimental

A solution of Schiff base (4-cinnamylidene)-(4-ethoxyphenyl)amine (1.0 eq.) was stirred with Phthaloylglycine (1.5 eq.), p-toluenesulfonyl chloride (1.5 eq.) and triethylamine (5 eq.) in dry CH2Cl2 at room temperature. After 10 h, the mixture was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and the solvent was evaporated to give the crude product which was then purified by recrystalization from EtOAc (Jarrahpour & Zarei, 2007) [mp: 434 -436 K]. IR (CHCl3) cm-1: 1724.2, 1758.5 (CO, phth), 1774.7 (CO, β-lactam); 1H NMR (250 MHz, CDCl3) δ 1.37 (Me, t, 3H), 2.33 (Me, s, 3H), 3.97 (OCH2, q, 2H), 5.03 (H-4, dd, 1H, J=5.5, 8.5), 5.68 (H-3, d, 1H, J=5.5), 6.32 (H-5, dd, J=8.5, 16.0), 6.85 (H-6, d, 1H, J=9.0), 7.19-7.82 (ArH, m, 13H); 13C NMR (62.9 MHz, CDCl3) δ 14.78 (Me), 57.69 (OCH2), 61.04 (C-4), 63.67 (C-3), 114.99-155.82 (C=C, aromatic carbons), 160.56 (CO, phth), 167.28 (CO, β-lactam); GC-MS m/z = 438 [M+]. Analysis calculated for C27H22N2O4: C 73.96, H 5.06, N 6.39%. Found: C 74.02, H 5.09, N 6.33%.

Refinement

All the H atoms were geometrically generated (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I), with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2.

Fig. 2.

View of the packing and hydrogen bonding interactions for (I). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C27H22N2O4 F000 = 1840
Mr = 438.47 Dx = 1.240 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 19454 reflections
a = 33.7560 (17) Å θ = 1.3–27.3º
b = 7.0403 (2) Å µ = 0.08 mm1
c = 31.0482 (17) Å T = 293 (2) K
β = 140.454 (3)º Prism, colourless
V = 4698.0 (5) Å3 0.53 × 0.45 × 0.14 mm
Z = 8

Data collection

Stoe IPDS-2 diffractometer 3071 reflections with I > 2σ(I)
Monochromator: plane graphite Rint = 0.052
Detector resolution: 6.67 pixels mm-1 θmax = 26.8º
T = 293(2) K θmin = 1.4º
ω scans h = −42→42
Absorption correction: none k = −8→8
22562 measured reflections l = −39→39
4934 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042   w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099 (Δ/σ)max < 0.001
S = 0.97 Δρmax = 0.17 e Å3
4934 reflections Δρmin = −0.11 e Å3
299 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0032 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.52753 (6) 0.55052 (15) 0.57556 (7) 0.0765 (5)
O2 0.54065 (6) 1.14698 (16) 0.64241 (7) 0.0887 (5)
O3 0.67821 (7) 0.6142 (2) 0.70712 (8) 0.1034 (6)
O4 0.74347 (5) −0.13874 (15) 0.89253 (6) 0.0729 (4)
N1 0.54930 (5) 0.83949 (16) 0.62525 (6) 0.0555 (4)
N2 0.64313 (6) 0.53412 (18) 0.74672 (7) 0.0617 (4)
C1 0.51510 (7) 0.7165 (2) 0.57070 (8) 0.0562 (5)
C2 0.46331 (7) 0.8305 (2) 0.50943 (8) 0.0554 (5)
C3 0.41750 (8) 0.7826 (3) 0.44180 (9) 0.0708 (6)
C4 0.37641 (8) 0.9267 (3) 0.39554 (10) 0.0814 (8)
C5 0.38151 (9) 1.1085 (3) 0.41602 (11) 0.0795 (8)
C6 0.42714 (8) 1.1549 (2) 0.48327 (10) 0.0714 (7)
C7 0.46791 (7) 1.0133 (2) 0.52986 (8) 0.0566 (5)
C8 0.52172 (7) 1.0197 (2) 0.60414 (9) 0.0598 (5)
C9 0.60433 (7) 0.7905 (2) 0.69508 (8) 0.0641 (5)
C10 0.64799 (8) 0.6362 (3) 0.71402 (9) 0.0719 (6)
C11 0.59771 (7) 0.6599 (2) 0.72999 (8) 0.0597 (5)
C12 0.67075 (7) 0.3647 (2) 0.78458 (8) 0.0567 (5)
C13 0.71296 (7) 0.2662 (2) 0.79469 (8) 0.0597 (5)
C14 0.73897 (7) 0.0980 (2) 0.83145 (8) 0.0601 (5)
C15 0.72250 (7) 0.0284 (2) 0.85749 (8) 0.0580 (5)
C16 0.68038 (7) 0.1281 (2) 0.84731 (9) 0.0639 (6)
C17 0.65484 (7) 0.2938 (2) 0.81140 (8) 0.0640 (6)
C18 0.79389 (8) −0.2335 (3) 0.91444 (10) 0.0753 (7)
C19 0.81168 (9) −0.3978 (3) 0.95687 (10) 0.0799 (7)
C20 0.53523 (7) 0.5771 (2) 0.68565 (8) 0.0564 (5)
C21 0.49520 (7) 0.6482 (2) 0.67920 (9) 0.0672 (6)
C22 0.43110 (8) 0.5844 (2) 0.63340 (9) 0.0655 (6)
C23 0.40642 (9) 0.4242 (3) 0.59366 (12) 0.0936 (8)
C24 0.34510 (11) 0.3722 (3) 0.54989 (13) 0.1084 (10)
C25 0.30869 (9) 0.4779 (3) 0.54607 (12) 0.0919 (8)
C26 0.33206 (9) 0.6339 (3) 0.58488 (10) 0.0815 (7)
C27 0.39250 (8) 0.6879 (3) 0.62798 (9) 0.0726 (6)
H3 0.41420 0.66050 0.42780 0.0850*
H4 0.34460 0.89950 0.34950 0.0980*
H5 0.35350 1.20120 0.38360 0.0950*
H6 0.43060 1.27740 0.49710 0.0860*
H9 0.62800 0.90510 0.72220 0.0770*
H11 0.61500 0.71940 0.77040 0.0720*
H13 0.72390 0.31270 0.77680 0.0720*
H14 0.76750 0.03250 0.83850 0.0720*
H16 0.66940 0.08180 0.86510 0.0770*
H17 0.62660 0.35940 0.80490 0.0770*
H18A 0.82890 −0.14760 0.94060 0.0900*
H18B 0.78150 −0.27720 0.87570 0.0900*
H19A 0.77670 −0.48160 0.93060 0.0960*
H19B 0.82430 −0.35290 0.99530 0.0960*
H19C 0.84560 −0.46500 0.97210 0.0960*
H20 0.52400 0.46840 0.66110 0.0680*
H21 0.50880 0.75120 0.70680 0.0810*
H23 0.43100 0.35050 0.59620 0.1120*
H24 0.32880 0.26450 0.52300 0.1300*
H25 0.26760 0.44230 0.51660 0.1100*
H26 0.30720 0.70510 0.58250 0.0980*
H27 0.40790 0.79670 0.65410 0.0870*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0929 (9) 0.0524 (6) 0.0847 (9) 0.0128 (6) 0.0686 (8) 0.0056 (6)
O2 0.0932 (9) 0.0554 (6) 0.0838 (9) 0.0000 (6) 0.0594 (8) −0.0081 (7)
O3 0.0824 (9) 0.1325 (11) 0.1212 (12) 0.0437 (8) 0.0853 (10) 0.0642 (9)
O4 0.0679 (7) 0.0707 (7) 0.0925 (9) 0.0208 (6) 0.0651 (7) 0.0242 (6)
N1 0.0501 (7) 0.0471 (6) 0.0569 (8) 0.0026 (5) 0.0380 (7) 0.0046 (6)
N2 0.0499 (7) 0.0691 (8) 0.0602 (8) 0.0122 (6) 0.0409 (7) 0.0166 (7)
C1 0.0574 (9) 0.0528 (8) 0.0646 (10) 0.0019 (7) 0.0487 (9) 0.0029 (8)
C2 0.0488 (8) 0.0622 (9) 0.0601 (10) 0.0012 (7) 0.0433 (8) 0.0039 (8)
C3 0.0620 (10) 0.0890 (11) 0.0675 (12) −0.0043 (9) 0.0515 (10) −0.0026 (10)
C4 0.0527 (10) 0.1283 (17) 0.0578 (11) 0.0072 (11) 0.0412 (10) 0.0174 (11)
C5 0.0597 (11) 0.0968 (14) 0.0827 (15) 0.0211 (10) 0.0551 (12) 0.0319 (11)
C6 0.0641 (10) 0.0658 (10) 0.0866 (14) 0.0161 (8) 0.0587 (11) 0.0234 (9)
C7 0.0491 (8) 0.0547 (8) 0.0671 (10) 0.0053 (7) 0.0451 (9) 0.0103 (7)
C8 0.0593 (9) 0.0477 (8) 0.0698 (11) −0.0010 (7) 0.0491 (10) 0.0023 (8)
C9 0.0488 (8) 0.0616 (9) 0.0589 (10) −0.0025 (7) 0.0355 (8) 0.0039 (8)
C10 0.0504 (9) 0.0870 (12) 0.0687 (11) 0.0113 (8) 0.0434 (9) 0.0225 (9)
C11 0.0522 (8) 0.0608 (8) 0.0548 (9) 0.0044 (7) 0.0383 (8) 0.0025 (7)
C12 0.0421 (7) 0.0642 (9) 0.0496 (9) 0.0026 (7) 0.0316 (7) 0.0061 (7)
C13 0.0462 (8) 0.0729 (9) 0.0568 (9) 0.0006 (7) 0.0389 (8) 0.0050 (8)
C14 0.0456 (8) 0.0676 (9) 0.0649 (10) 0.0045 (7) 0.0420 (8) 0.0050 (8)
C15 0.0477 (8) 0.0627 (9) 0.0574 (10) 0.0050 (7) 0.0389 (8) 0.0057 (7)
C16 0.0607 (9) 0.0717 (10) 0.0670 (11) 0.0111 (8) 0.0513 (9) 0.0141 (8)
C17 0.0562 (9) 0.0744 (10) 0.0639 (10) 0.0152 (8) 0.0470 (9) 0.0130 (8)
C18 0.0659 (10) 0.0775 (11) 0.0890 (13) 0.0206 (9) 0.0614 (11) 0.0174 (10)
C19 0.0763 (12) 0.0824 (11) 0.0857 (13) 0.0266 (9) 0.0637 (12) 0.0206 (10)
C20 0.0555 (9) 0.0539 (8) 0.0560 (9) 0.0039 (7) 0.0420 (8) 0.0030 (7)
C21 0.0574 (9) 0.0721 (10) 0.0643 (11) −0.0014 (8) 0.0449 (9) −0.0129 (8)
C22 0.0579 (9) 0.0755 (10) 0.0638 (10) −0.0002 (8) 0.0471 (9) −0.0060 (8)
C23 0.0762 (13) 0.0912 (13) 0.1146 (17) −0.0156 (10) 0.0739 (14) −0.0352 (12)
C24 0.0876 (15) 0.1084 (16) 0.124 (2) −0.0347 (13) 0.0802 (16) −0.0474 (14)
C25 0.0647 (11) 0.1170 (16) 0.0931 (15) −0.0159 (12) 0.0606 (12) −0.0111 (13)
C26 0.0662 (11) 0.1067 (14) 0.0831 (13) 0.0048 (11) 0.0606 (11) 0.0017 (12)
C27 0.0659 (11) 0.0863 (11) 0.0715 (11) 0.0024 (9) 0.0545 (10) −0.0063 (9)

Geometric parameters (Å, °)

O1—C1 1.211 (2) C21—C22 1.470 (4)
O2—C8 1.205 (2) C22—C23 1.380 (3)
O3—C10 1.203 (5) C22—C27 1.385 (4)
O4—C15 1.3717 (18) C23—C24 1.388 (5)
O4—C18 1.421 (4) C24—C25 1.362 (6)
N1—C1 1.3913 (19) C25—C26 1.347 (3)
N1—C8 1.402 (2) C26—C27 1.374 (4)
N1—C9 1.435 (2) C3—H3 0.9300
N2—C10 1.353 (3) C4—H4 0.9300
N2—C11 1.475 (3) C5—H5 0.9300
N2—C12 1.408 (2) C6—H6 0.9300
C1—C2 1.480 (2) C9—H9 0.9800
C2—C3 1.381 (2) C11—H11 0.9800
C2—C7 1.390 (2) C13—H13 0.9300
C3—C4 1.394 (3) C14—H14 0.9300
C4—C5 1.380 (3) C16—H16 0.9300
C5—C6 1.371 (3) C17—H17 0.9300
C6—C7 1.382 (2) C18—H18A 0.9700
C7—C8 1.470 (2) C18—H18B 0.9700
C9—C10 1.537 (4) C19—H19A 0.9600
C9—C11 1.563 (3) C19—H19B 0.9600
C11—C20 1.485 (3) C19—H19C 0.9600
C12—C13 1.386 (4) C20—H20 0.9300
C12—C17 1.386 (4) C21—H21 0.9300
C13—C14 1.389 (2) C23—H23 0.9300
C14—C15 1.377 (4) C24—H24 0.9300
C15—C16 1.386 (4) C25—H25 0.9300
C16—C17 1.366 (2) C26—H26 0.9300
C18—C19 1.488 (3) C27—H27 0.9300
C20—C21 1.304 (4)
C15—O4—C18 118.5 (2) C24—C25—C26 120.1 (3)
C1—N1—C8 111.45 (13) C25—C26—C27 120.2 (3)
C1—N1—C9 125.59 (13) C22—C27—C26 121.6 (2)
C8—N1—C9 122.91 (13) C2—C3—H3 122.00
C10—N2—C11 96.40 (17) C4—C3—H3 122.00
C10—N2—C12 133.7 (3) C3—C4—H4 119.00
C11—N2—C12 129.9 (2) C5—C4—H4 119.00
O1—C1—N1 124.49 (15) C4—C5—H5 119.00
O1—C1—C2 129.48 (15) C6—C5—H5 119.00
N1—C1—C2 106.03 (13) C5—C6—H6 121.00
C1—C2—C3 130.54 (16) C7—C6—H6 121.00
C1—C2—C7 108.06 (14) N1—C9—H9 110.00
C3—C2—C7 121.35 (16) C10—C9—H9 110.00
C2—C3—C4 116.54 (19) C11—C9—H9 110.00
C3—C4—C5 121.93 (19) N2—C11—H11 112.00
C4—C5—C6 121.16 (19) C9—C11—H11 112.00
C5—C6—C7 117.70 (16) C20—C11—H11 112.00
C2—C7—C6 121.31 (15) C12—C13—H13 120.00
C2—C7—C8 108.22 (14) C14—C13—H13 120.00
C6—C7—C8 130.44 (15) C13—C14—H14 120.00
O2—C8—N1 123.78 (16) C15—C14—H14 120.00
O2—C8—C7 130.10 (16) C15—C16—H16 120.00
N1—C8—C7 106.12 (13) C17—C16—H16 120.00
N1—C9—C10 119.36 (17) C12—C17—H17 120.00
N1—C9—C11 118.6 (2) C16—C17—H17 120.00
C10—C9—C11 85.79 (16) O4—C18—H18A 110.00
O3—C10—N2 132.5 (2) O4—C18—H18B 110.00
O3—C10—C9 135.9 (2) C19—C18—H18A 110.00
N2—C10—C9 91.6 (2) C19—C18—H18B 110.00
N2—C11—C9 86.09 (19) H18A—C18—H18B 109.00
N2—C11—C20 115.99 (14) C18—C19—H19A 109.00
C9—C11—C20 116.63 (14) C18—C19—H19B 110.00
N2—C12—C13 121.1 (2) C18—C19—H19C 109.00
N2—C12—C17 119.5 (2) H19A—C19—H19B 110.00
C13—C12—C17 119.40 (16) H19A—C19—H19C 109.00
C12—C13—C14 120.1 (2) H19B—C19—H19C 109.00
C13—C14—C15 120.0 (2) C11—C20—H20 118.00
O4—C15—C14 125.2 (2) C21—C20—H20 118.00
O4—C15—C16 115.3 (2) C20—C21—H21 116.00
C14—C15—C16 119.57 (16) C22—C21—H21 116.00
C15—C16—C17 120.6 (3) C22—C23—H23 120.00
C12—C17—C16 120.3 (3) C24—C23—H23 120.00
O4—C18—C19 107.8 (3) C23—C24—H24 120.00
C11—C20—C21 123.68 (16) C25—C24—H24 120.00
C20—C21—C22 127.56 (17) C24—C25—H25 120.00
C21—C22—C23 122.6 (3) C26—C25—H25 120.00
C21—C22—C27 120.12 (16) C25—C26—H26 120.00
C23—C22—C27 117.3 (3) C27—C26—H26 120.00
C22—C23—C24 120.5 (3) C22—C27—H27 119.00
C23—C24—C25 120.4 (2) C26—C27—H27 119.00
C18—O4—C15—C16 −170.02 (15) C4—C5—C6—C7 0.1 (5)
C18—O4—C15—C14 11.6 (2) C5—C6—C7—C8 178.3 (3)
C15—O4—C18—C19 174.18 (14) C5—C6—C7—C2 0.6 (5)
C9—N1—C1—C2 −179.5 (2) C6—C7—C8—N1 −175.1 (3)
C9—N1—C1—O1 0.5 (5) C2—C7—C8—N1 2.8 (3)
C1—N1—C9—C10 30.8 (4) C6—C7—C8—O2 5.8 (6)
C8—N1—C9—C10 −152.3 (2) C2—C7—C8—O2 −176.3 (3)
C8—N1—C1—C2 3.2 (3) C10—C9—C11—C20 −114.35 (19)
C1—N1—C8—O2 175.4 (3) N1—C9—C10—O3 60.1 (3)
C9—N1—C8—O2 −1.9 (5) N1—C9—C11—C20 7.0 (3)
C1—N1—C8—C7 −3.8 (3) C11—C9—C10—O3 −179.3 (2)
C9—N1—C8—C7 178.9 (2) N1—C9—C11—N2 124.16 (17)
C8—N1—C1—O1 −176.8 (3) C10—C9—C11—N2 2.85 (12)
C8—N1—C9—C11 105.6 (2) N1—C9—C10—N2 −123.7 (2)
C1—N1—C9—C11 −71.3 (3) C11—C9—C10—N2 −3.10 (13)
C10—N2—C12—C17 −179.02 (18) C9—C11—C20—C21 −98.1 (3)
C11—N2—C12—C17 0.9 (3) N2—C11—C20—C21 162.74 (18)
C12—N2—C11—C9 176.79 (16) C13—C12—C17—C16 −0.2 (2)
C10—N2—C12—C13 0.1 (3) N2—C12—C13—C14 −179.13 (15)
C11—N2—C12—C13 −179.98 (15) N2—C12—C17—C16 178.93 (15)
C12—N2—C10—O3 −0.4 (4) C17—C12—C13—C14 0.0 (2)
C12—N2—C11—C20 −65.4 (2) C12—C13—C14—C15 0.4 (2)
C10—N2—C11—C20 114.56 (19) C13—C14—C15—C16 −0.6 (2)
C10—N2—C11—C9 −3.25 (13) C13—C14—C15—O4 177.73 (15)
C11—N2—C10—O3 179.7 (2) C14—C15—C16—C17 0.4 (3)
C11—N2—C10—C9 3.30 (14) O4—C15—C16—C17 −178.09 (15)
C12—N2—C10—C9 −176.74 (17) C15—C16—C17—C12 0.0 (3)
N1—C1—C2—C7 −1.4 (3) C11—C20—C21—C22 175.49 (18)
N1—C1—C2—C3 176.2 (3) C20—C21—C22—C23 5.4 (3)
O1—C1—C2—C7 178.6 (3) C20—C21—C22—C27 −173.5 (2)
O1—C1—C2—C3 −3.8 (6) C21—C22—C23—C24 −178.4 (2)
C3—C2—C7—C6 −0.6 (5) C27—C22—C23—C24 0.6 (4)
C1—C2—C3—C4 −177.3 (3) C21—C22—C27—C26 179.0 (2)
C7—C2—C3—C4 −0.1 (5) C23—C22—C27—C26 0.0 (3)
C3—C2—C7—C8 −178.7 (3) C22—C23—C24—C25 −0.6 (4)
C1—C2—C7—C8 −0.9 (3) C23—C24—C25—C26 0.0 (4)
C1—C2—C7—C6 177.2 (3) C24—C25—C26—C27 0.6 (4)
C2—C3—C4—C5 0.7 (5) C25—C26—C27—C22 −0.6 (4)
C3—C4—C5—C6 −0.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.93 2.53 3.283 (3) 138
C5—H5···O3ii 0.93 2.47 3.257 (3) 142
C13—H13···O3 0.93 2.53 3.139 (2) 123
C20—H20···O2iii 0.93 2.51 3.374 (2) 156
C9—H9···Cg1iv 0.98 2.84 3.7938 (16) 166
C19—H19C···Cg2v 0.96 2.82 3.633 (4) 143

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, y−1, z; (iv) x, y+1, z; (v) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2715).

References

  1. Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Aoyama, Y., Uenaka, M., Kii, M., Tanaka, M., Konoike, T., Hayasaki-Kajiwara, Y., Naya, N. & Nakajima, M. (2001). Bioorg. Med. Chem.9, 3065–3075. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Halve, A. K., Bhadauria, D. & Dubey, R. (2007). Bioorg. Med. Chem. Lett.17, 341–345. [DOI] [PubMed]
  7. Jarrahpour, A. A. & Zarei, M. (2007). Molecules, 12, 2364–2379. [DOI] [PMC free article] [PubMed]
  8. Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011586/hb2715sup1.cif

e-64-0o924-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011586/hb2715Isup2.hkl

e-64-0o924-Isup2.hkl (236.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES