Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 23;64(Pt 5):o895. doi: 10.1107/S1600536808010568

Quinoxaline–3-amino­phenol–water (2/1/2)

Agnieszka Czapik a, Maria Gdaniec a,*
PMCID: PMC2961097  PMID: 21202378

Abstract

The asymmetric unit of the title compound, 2C8H6N2·C6H7NO·2H2O, contains two quinoxaline mol­ecules, one mol­ecule of 3-amino­phenol and two water mol­ecules which are hydrogen bonded to form a two-dimensional polymeric structure. Each of the symmetry-independent quinoxaline mol­ecules forms separate stacks of different symmetry. In one set of stacks, the mol­ecules are related by a screw axis and are slightly tilted [dihedral angle = 7.12 (1)°]. In the second set of stacks, adjacent mol­ecules are parallel and related by an inversion center [inter­planar distances = 3.376 (4) and 3.473 (4) Å].

Related literature

For supra­molecular ladders, see: Sokolov & MacGillivray (2006); Sokolov et al. (2006). For complexes of aromatic diaza­heterocycles with phenols, see: Thalladi et al. (2000); Kadzewski & Gdaniec (2006).graphic file with name e-64-0o895-scheme1.jpg

Experimental

Crystal data

  • 2C8H6N2·C6H7NO·2H2O

  • M r = 405.45

  • Monoclinic, Inline graphic

  • a = 15.2951 (10) Å

  • b = 7.1383 (4) Å

  • c = 20.1614 (14) Å

  • β = 110.775 (8)°

  • V = 2058.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130.0 (2) K

  • 0.40 × 0.40 × 0.07 mm

Data collection

  • Kuma KM-4-CCD κ-geometry diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.966, T max = 1.000 (expected range = 0.960–0.994)

  • 16706 measured reflections

  • 3620 independent reflections

  • 2285 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.070

  • S = 0.91

  • 3620 reflections

  • 300 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010568/fl2194sup1.cif

e-64-0o895-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010568/fl2194Isup2.hkl

e-64-0o895-Isup2.hkl (177.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1C—H1C⋯N1B 0.927 (17) 1.857 (17) 2.7844 (14) 178.7 (16)
N1C—H2NC⋯O1Ei 0.927 (16) 2.125 (17) 3.0400 (19) 168.8 (14)
N1C—H1NC⋯O1Dii 0.891 (16) 2.191 (17) 3.058 (2) 164.4 (13)
O1D—H1D⋯N1A 0.87 (2) 2.01 (2) 2.8651 (17) 166.8 (17)
O1D—H2D⋯O1Ei 0.94 (2) 1.77 (2) 2.7022 (16) 174.5 (19)
O1E—H1E⋯O1Diii 0.95 (2) 1.82 (2) 2.7711 (17) 177.8 (19)
O1E—H2E⋯N4A 0.92 (2) 1.92 (2) 2.8446 (16) 175.4 (18)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

3-Aminophenol shows the ability to direct the assembly of supramolecular ladders via hydrogen bonding and π–π stacking interactions in the solid state (Sokolov et al., 2006; Sokolov & MacGillivray, 2006). On the other hand, heterocycles like phenazine and quinoxaline are known to form a robust host framework with one-dimensional channels filled with small aromatic guest molecules (Thalladi et al., 2000; Kadzewski & Gdaniec, 2006). In the course of our studies on molecular complexes of diazaaromatic heterocycles we cocrystallized quinoxaline with 3-aminophenol expecting to obtain ladder-type assemblies analogous to those observed in cocrystals of bipyridines with 3-aminophenol (Sokolov et al., 2006). Unfortunately, the molecular complex with the expected 2:1 component ratio crystallized as a dihydrate (Fig. 1) that had a significant impact on the organization of molecules in the crystal.

Crystal packing of the title compound is shown in Fig. 2. The asymmetric unit contains two quinoxaline molecules, one 3-aminophenol molecule and two water molecules. The water molecules are hydrogen-bonded (for the hydrogen-bond geometry see Table 2) to form a helix extending along the b axis with the amino group of the 3-aminophenol linked to the helix via N—H···O interactions in the manner shown in Fig. 3a. The quinoxaline B molecules join to this assembly via hydrogen bonds to the phenolic OH groups whereas the quinoxaline A molecules bridge the water helices via O—H···N bonding and π–π stacking interactions generating a supramolecular two dimensional polymeric structure (Figure 3 b). The quinoxaline B molecules are also organized into π–π stacks extending along the b axis. The B molecules in the stacks are related by a screw-axis and are slightly tilted [dihedral angle of 7.12 (1)°] whereas the A molecules are parallel and related by inversion centers [interplanar distances of 3.376 (4) and 3.473 (4) Å].

Experimental

The title compound was obtained by dissolving quinoxaline (0.2 g, 1.54 mmol) and 3-aminophenol (0.084 g, 0.77 mmol) in 5 ml of methanol followed slow evaporation to yield colorless plates suitable for data collection.

Refinement

All H atoms were located in electron-density difference maps. C-bonded H atoms were placed at calculated positions, with C—H = 0.93 Å, and were refined as riding on their carrier C atoms, with Uĩso~(H) = 1.2Ueq(C). The H atoms of the OH and NH groups were freely refined (coordinates and isotropic displacement parameters).

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

: Crystal packing viewed down the y axis. Hydrogen bonds are shown with dashed lines.

Fig. 3.

Fig. 3.

a) the H2O helix with the 3-aminophenol molecules attached to the helix via hydrogen bonds to the amino group, b) two-dimensional polymeric structure formed by hydrogen-bonded quinoxaline A molecules and water molecules.

Crystal data

2C8H6N2·C6H7NO·2H2O F000 = 856
Mr = 405.45 Dx = 1.309 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5665 reflections
a = 15.2951 (10) Å θ = 2.1–27.9º
b = 7.1383 (4) Å µ = 0.09 mm1
c = 20.1614 (14) Å T = 130.0 (2) K
β = 110.775 (8)º Plate, colourless
V = 2058.1 (3) Å3 0.40 × 0.40 × 0.07 mm
Z = 4

Data collection

Kuma KM-4-CCD κ-geometry diffractometer 3620 independent reflections
Radiation source: fine-focus sealed tube 2285 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.037
T = 130(2) K θmax = 25.0º
ω scans θmin = 4.1º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −18→17
Tmin = 0.966, Tmax = 1.000 k = −8→8
16706 measured reflections l = −23→23

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031   w = 1/[σ2(Fo2) + (0.0362P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070 (Δ/σ)max = 0.001
S = 0.91 Δρmax = 0.20 e Å3
3620 reflections Δρmin = −0.14 e Å3
300 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0029 (5)
Secondary atom site location: difference Fourier map

Special details

Experimental. Absorption correction: SCALE3 ABSPACK scaling algorithm of the Crysalis RED program (Oxford Diffraction, 2007)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.40385 (8) 0.19751 (16) 0.55810 (6) 0.0257 (3)
C2A 0.33478 (10) 0.1595 (2) 0.49872 (7) 0.0268 (4)
H2A 0.2767 0.1284 0.5008 0.032*
C3A 0.34523 (10) 0.1639 (2) 0.43241 (8) 0.0272 (4)
H3A 0.2937 0.1354 0.3923 0.033*
N4A 0.42444 (8) 0.20642 (17) 0.42434 (6) 0.0257 (3)
C5A 0.58438 (10) 0.3015 (2) 0.48061 (8) 0.0295 (4)
H5A 0.5917 0.3043 0.4368 0.035*
C6A 0.65726 (10) 0.3465 (2) 0.54049 (9) 0.0346 (4)
H6A 0.7144 0.3799 0.5373 0.042*
C7A 0.64723 (10) 0.3431 (2) 0.60726 (8) 0.0346 (4)
H7A 0.6977 0.3744 0.6477 0.042*
C8A 0.56397 (10) 0.2943 (2) 0.61310 (8) 0.0295 (4)
H8A 0.5578 0.2925 0.6574 0.035*
C9A 0.48741 (9) 0.24661 (19) 0.55196 (7) 0.0223 (3)
C10A 0.49775 (9) 0.25055 (19) 0.48513 (7) 0.0215 (3)
N1B −0.01606 (8) 0.88628 (16) 0.35287 (6) 0.0237 (3)
C2B −0.10425 (10) 0.88544 (19) 0.34628 (7) 0.0257 (4)
H2B −0.1194 0.8923 0.3870 0.031*
C3B −0.17739 (10) 0.8745 (2) 0.27975 (8) 0.0294 (4)
H3B −0.2388 0.8749 0.2785 0.035*
N4B −0.16252 (8) 0.86390 (17) 0.21969 (6) 0.0297 (3)
C5B −0.04863 (11) 0.8530 (2) 0.16312 (7) 0.0312 (4)
H5B −0.0964 0.8453 0.1191 0.037*
C6B 0.04198 (11) 0.8538 (2) 0.16717 (8) 0.0333 (4)
H6B 0.0558 0.8487 0.1259 0.040*
C7B 0.11481 (11) 0.8625 (2) 0.23343 (8) 0.0331 (4)
H7B 0.1766 0.8617 0.2357 0.040*
C8B 0.09583 (10) 0.8720 (2) 0.29450 (8) 0.0294 (4)
H8B 0.1445 0.8775 0.3381 0.035*
C9B 0.00272 (9) 0.87338 (19) 0.29139 (7) 0.0210 (3)
C10B −0.07063 (10) 0.86356 (19) 0.22497 (7) 0.0229 (3)
C1C 0.15035 (9) 0.7993 (2) 0.52107 (7) 0.0208 (3)
O1C 0.11852 (7) 0.96292 (14) 0.48513 (5) 0.0286 (3)
H1C 0.0737 (11) 0.936 (2) 0.4413 (9) 0.061 (6)*
C2C 0.22485 (9) 0.8116 (2) 0.58454 (7) 0.0217 (3)
H2C 0.2511 0.9280 0.6007 0.026*
C3C 0.26114 (9) 0.6520 (2) 0.62471 (7) 0.0240 (4)
N1C 0.33268 (10) 0.6689 (2) 0.68974 (8) 0.0443 (4)
H2NC 0.3584 (10) 0.561 (2) 0.7146 (8) 0.044 (5)*
H1NC 0.3613 (10) 0.780 (2) 0.6997 (8) 0.037 (5)*
C4C 0.22258 (9) 0.4776 (2) 0.59862 (7) 0.0274 (4)
H4C 0.2472 0.3690 0.6238 0.033*
C5C 0.14761 (10) 0.4673 (2) 0.53511 (7) 0.0268 (4)
H5C 0.1218 0.3509 0.5183 0.032*
C6C 0.11020 (9) 0.6262 (2) 0.49608 (7) 0.0249 (4)
H6C 0.0592 0.6176 0.4539 0.030*
O1D 0.40947 (7) 0.06594 (16) 0.69381 (7) 0.0325 (3)
H1D 0.4028 (12) 0.121 (3) 0.6539 (11) 0.071 (7)*
H2D 0.4209 (13) 0.161 (3) 0.7281 (11) 0.089 (8)*
O1E 0.43284 (8) 0.14985 (16) 0.28706 (6) 0.0320 (3)
H1E 0.4870 (14) 0.078 (3) 0.2927 (10) 0.086 (7)*
H2E 0.4315 (12) 0.175 (3) 0.3316 (11) 0.077 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0264 (7) 0.0255 (8) 0.0254 (7) −0.0008 (5) 0.0097 (6) 0.0018 (5)
C2A 0.0243 (8) 0.0269 (10) 0.0292 (9) −0.0017 (7) 0.0095 (7) 0.0011 (7)
C3A 0.0255 (9) 0.0251 (10) 0.0263 (9) −0.0008 (7) 0.0036 (7) −0.0005 (7)
N4A 0.0280 (7) 0.0239 (7) 0.0249 (7) 0.0011 (5) 0.0090 (6) 0.0006 (5)
C5A 0.0293 (9) 0.0268 (10) 0.0378 (10) 0.0035 (7) 0.0185 (8) 0.0019 (7)
C6A 0.0228 (9) 0.0256 (10) 0.0568 (12) −0.0007 (7) 0.0158 (8) −0.0005 (8)
C7A 0.0274 (9) 0.0274 (10) 0.0396 (10) 0.0002 (7) 0.0001 (8) −0.0030 (8)
C8A 0.0312 (9) 0.0283 (9) 0.0253 (9) −0.0006 (7) 0.0054 (7) −0.0015 (7)
C9A 0.0239 (8) 0.0169 (9) 0.0256 (9) 0.0009 (6) 0.0083 (7) 0.0018 (6)
C10A 0.0247 (8) 0.0155 (9) 0.0248 (9) 0.0030 (6) 0.0094 (7) 0.0005 (6)
N1B 0.0234 (7) 0.0231 (8) 0.0242 (7) 0.0012 (5) 0.0078 (6) 0.0024 (5)
C2B 0.0298 (9) 0.0242 (9) 0.0269 (9) 0.0032 (7) 0.0146 (7) 0.0049 (7)
C3B 0.0218 (8) 0.0331 (10) 0.0348 (10) 0.0012 (7) 0.0120 (7) 0.0063 (7)
N4B 0.0254 (7) 0.0345 (9) 0.0283 (7) 0.0002 (6) 0.0083 (6) 0.0050 (6)
C5B 0.0410 (10) 0.0298 (10) 0.0233 (9) 0.0000 (7) 0.0120 (8) 0.0015 (7)
C6B 0.0486 (11) 0.0281 (10) 0.0331 (10) 0.0024 (8) 0.0266 (8) 0.0046 (7)
C7B 0.0314 (9) 0.0270 (10) 0.0492 (11) 0.0029 (7) 0.0246 (8) 0.0043 (8)
C8B 0.0233 (9) 0.0296 (10) 0.0339 (9) 0.0026 (7) 0.0084 (7) 0.0029 (7)
C9B 0.0241 (8) 0.0164 (8) 0.0235 (8) 0.0019 (6) 0.0099 (7) 0.0027 (6)
C10B 0.0261 (8) 0.0183 (9) 0.0247 (8) 0.0013 (6) 0.0093 (7) 0.0038 (6)
C1C 0.0210 (8) 0.0218 (9) 0.0215 (8) 0.0031 (7) 0.0100 (7) 0.0026 (7)
O1C 0.0286 (6) 0.0246 (7) 0.0255 (6) −0.0010 (5) 0.0009 (5) 0.0019 (5)
C2C 0.0192 (8) 0.0232 (9) 0.0239 (8) −0.0042 (6) 0.0088 (6) −0.0024 (6)
C3C 0.0173 (8) 0.0311 (10) 0.0243 (8) −0.0010 (7) 0.0082 (7) 0.0038 (7)
N1C 0.0365 (9) 0.0366 (10) 0.0408 (9) −0.0100 (8) −0.0099 (7) 0.0144 (8)
C4C 0.0256 (9) 0.0270 (10) 0.0314 (9) 0.0025 (7) 0.0124 (7) 0.0085 (7)
C5C 0.0298 (9) 0.0236 (9) 0.0294 (9) −0.0049 (7) 0.0136 (7) −0.0030 (7)
C6C 0.0244 (8) 0.0272 (10) 0.0221 (8) −0.0031 (7) 0.0069 (7) −0.0014 (7)
O1D 0.0400 (7) 0.0326 (7) 0.0252 (7) −0.0059 (5) 0.0119 (5) −0.0024 (6)
O1E 0.0382 (7) 0.0348 (7) 0.0229 (6) 0.0000 (5) 0.0106 (5) 0.0005 (5)

Geometric parameters (Å, °)

N1A—C2A 1.3136 (16) C6B—C7B 1.405 (2)
N1A—C9A 1.3725 (17) C6B—H6B 0.9300
C2A—C3A 1.402 (2) C7B—C8B 1.363 (2)
C2A—H2A 0.9300 C7B—H7B 0.9300
C3A—N4A 1.3138 (17) C8B—C9B 1.4031 (18)
C3A—H3A 0.9300 C8B—H8B 0.9300
N4A—C10A 1.3726 (16) C9B—C10B 1.4111 (18)
C5A—C6A 1.3597 (19) C1C—O1C 1.3697 (16)
C5A—C10A 1.4078 (18) C1C—C2C 1.3818 (17)
C5A—H5A 0.9300 C1C—C6C 1.3919 (19)
C6A—C7A 1.408 (2) O1C—H1C 0.927 (17)
C6A—H6A 0.9300 C2C—C3C 1.3940 (19)
C7A—C8A 1.365 (2) C2C—H2C 0.9300
C7A—H7A 0.9300 C3C—N1C 1.3832 (18)
C8A—C9A 1.4080 (18) C3C—C4C 1.398 (2)
C8A—H8A 0.9300 N1C—H2NC 0.927 (16)
C9A—C10A 1.4116 (19) N1C—H1NC 0.891 (16)
N1B—C2B 1.3077 (16) C4C—C5C 1.3850 (18)
N1B—C9B 1.3711 (17) C4C—H4C 0.9300
C2B—C3B 1.4114 (19) C5C—C6C 1.3839 (19)
C2B—H2B 0.9300 C5C—H5C 0.9300
C3B—N4B 1.3112 (18) C6C—H6C 0.9300
C3B—H3B 0.9300 O1D—H1D 0.87 (2)
N4B—C10B 1.3714 (16) O1D—H2D 0.94 (2)
C5B—C6B 1.3591 (19) O1E—H1E 0.95 (2)
C5B—C10B 1.404 (2) O1E—H2E 0.92 (2)
C5B—H5B 0.9300
C2A—N1A—C9A 116.37 (12) C5B—C6B—H6B 119.8
N1A—C2A—C3A 122.51 (14) C7B—C6B—H6B 119.8
N1A—C2A—H2A 118.7 C8B—C7B—C6B 120.66 (14)
C3A—C2A—H2A 118.7 C8B—C7B—H7B 119.7
N4A—C3A—C2A 123.05 (13) C6B—C7B—H7B 119.7
N4A—C3A—H3A 118.5 C7B—C8B—C9B 119.86 (14)
C2A—C3A—H3A 118.5 C7B—C8B—H8B 120.1
C3A—N4A—C10A 116.07 (12) C9B—C8B—H8B 120.1
C6A—C5A—C10A 119.83 (15) N1B—C9B—C8B 119.66 (12)
C6A—C5A—H5A 120.1 N1B—C9B—C10B 120.68 (12)
C10A—C5A—H5A 120.1 C8B—C9B—C10B 119.65 (13)
C5A—C6A—C7A 120.79 (15) N4B—C10B—C5B 119.54 (13)
C5A—C6A—H6A 119.6 N4B—C10B—C9B 121.44 (13)
C7A—C6A—H6A 119.6 C5B—C10B—C9B 119.02 (13)
C8A—C7A—C6A 120.54 (14) O1C—C1C—C2C 117.20 (13)
C8A—C7A—H7A 119.7 O1C—C1C—C6C 122.48 (12)
C6A—C7A—H7A 119.7 C2C—C1C—C6C 120.32 (13)
C7A—C8A—C9A 119.86 (14) C1C—O1C—H1C 109.2 (11)
C7A—C8A—H8A 120.1 C1C—C2C—C3C 120.90 (13)
C9A—C8A—H8A 120.1 C1C—C2C—H2C 119.6
N1A—C9A—C8A 119.65 (13) C3C—C2C—H2C 119.6
N1A—C9A—C10A 120.96 (12) N1C—C3C—C2C 119.84 (14)
C8A—C9A—C10A 119.40 (13) N1C—C3C—C4C 121.36 (14)
N4A—C10A—C5A 119.40 (13) C2C—C3C—C4C 118.78 (13)
N4A—C10A—C9A 121.01 (13) C3C—N1C—H2NC 118.7 (10)
C5A—C10A—C9A 119.59 (13) C3C—N1C—H1NC 116.8 (10)
C2B—N1B—C9B 116.56 (11) H2NC—N1C—H1NC 122.4 (14)
N1B—C2B—C3B 122.56 (14) C5C—C4C—C3C 119.71 (13)
N1B—C2B—H2B 118.7 C5C—C4C—H4C 120.1
C3B—C2B—H2B 118.7 C3C—C4C—H4C 120.1
N4B—C3B—C2B 122.83 (14) C6C—C5C—C4C 121.45 (14)
N4B—C3B—H3B 118.6 C6C—C5C—H5C 119.3
C2B—C3B—H3B 118.6 C4C—C5C—H5C 119.3
C3B—N4B—C10B 115.92 (12) C5C—C6C—C1C 118.79 (13)
C6B—C5B—C10B 120.46 (14) C5C—C6C—H6C 120.6
C6B—C5B—H5B 119.8 C1C—C6C—H6C 120.6
C10B—C5B—H5B 119.8 H1D—O1D—H2D 106.6 (18)
C5B—C6B—C7B 120.34 (14) H1E—O1E—H2E 107.9 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1C—H1C···N1B 0.927 (17) 1.857 (17) 2.7844 (14) 178.7 (16)
N1C—H2NC···O1Ei 0.927 (16) 2.125 (17) 3.0400 (19) 168.8 (14)
N1C—H1NC···O1Dii 0.891 (16) 2.191 (17) 3.058 (2) 164.4 (13)
O1D—H1D···N1A 0.87 (2) 2.01 (2) 2.8651 (17) 166.8 (17)
O1D—H2D···O1Ei 0.94 (2) 1.77 (2) 2.7022 (16) 174.5 (19)
O1E—H1E···O1Diii 0.95 (2) 1.82 (2) 2.7711 (17) 177.8 (19)
O1E—H2E···N4A 0.92 (2) 1.92 (2) 2.8446 (16) 175.4 (18)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2194).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Kadzewski, A. & Gdaniec, M. (2006). Acta Cryst. E62, o3498–o3500.
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  4. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, Oxfordshire, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sokolov, A. N., Friščić, T., Blais, S., Ripmeester, J. A. & MacGillivray, L. R. (2006). Cryst. Growth Des.6, 2427–2428.
  7. Sokolov, A. N. & MacGillivray, L. R. (2006). Cryst. Growth Des.6, 2615–2624.
  8. Thalladi, V. R., Smolka, T., Boese, R. & Sustmann, R. (2000). CrystEngComm, 2, 96–101.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010568/fl2194sup1.cif

e-64-0o895-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010568/fl2194Isup2.hkl

e-64-0o895-Isup2.hkl (177.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES