Abstract
The asymmetric unit of the title compound, 2C8H6N2·C6H7NO·2H2O, contains two quinoxaline molecules, one molecule of 3-aminophenol and two water molecules which are hydrogen bonded to form a two-dimensional polymeric structure. Each of the symmetry-independent quinoxaline molecules forms separate stacks of different symmetry. In one set of stacks, the molecules are related by a screw axis and are slightly tilted [dihedral angle = 7.12 (1)°]. In the second set of stacks, adjacent molecules are parallel and related by an inversion center [interplanar distances = 3.376 (4) and 3.473 (4) Å].
Related literature
For supramolecular ladders, see: Sokolov & MacGillivray (2006 ▶); Sokolov et al. (2006 ▶). For complexes of aromatic diazaheterocycles with phenols, see: Thalladi et al. (2000 ▶); Kadzewski & Gdaniec (2006 ▶).
Experimental
Crystal data
2C8H6N2·C6H7NO·2H2O
M r = 405.45
Monoclinic,
a = 15.2951 (10) Å
b = 7.1383 (4) Å
c = 20.1614 (14) Å
β = 110.775 (8)°
V = 2058.1 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 130.0 (2) K
0.40 × 0.40 × 0.07 mm
Data collection
Kuma KM-4-CCD κ-geometry diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 ▶) T min = 0.966, T max = 1.000 (expected range = 0.960–0.994)
16706 measured reflections
3620 independent reflections
2285 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.031
wR(F 2) = 0.070
S = 0.91
3620 reflections
300 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.20 e Å−3
Δρmin = −0.14 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2007 ▶); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010568/fl2194sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010568/fl2194Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1C—H1C⋯N1B | 0.927 (17) | 1.857 (17) | 2.7844 (14) | 178.7 (16) |
| N1C—H2NC⋯O1Ei | 0.927 (16) | 2.125 (17) | 3.0400 (19) | 168.8 (14) |
| N1C—H1NC⋯O1Dii | 0.891 (16) | 2.191 (17) | 3.058 (2) | 164.4 (13) |
| O1D—H1D⋯N1A | 0.87 (2) | 2.01 (2) | 2.8651 (17) | 166.8 (17) |
| O1D—H2D⋯O1Ei | 0.94 (2) | 1.77 (2) | 2.7022 (16) | 174.5 (19) |
| O1E—H1E⋯O1Diii | 0.95 (2) | 1.82 (2) | 2.7711 (17) | 177.8 (19) |
| O1E—H2E⋯N4A | 0.92 (2) | 1.92 (2) | 2.8446 (16) | 175.4 (18) |
Symmetry codes: (i)
; (ii)
; (iii)
.
supplementary crystallographic information
Comment
3-Aminophenol shows the ability to direct the assembly of supramolecular ladders via hydrogen bonding and π–π stacking interactions in the solid state (Sokolov et al., 2006; Sokolov & MacGillivray, 2006). On the other hand, heterocycles like phenazine and quinoxaline are known to form a robust host framework with one-dimensional channels filled with small aromatic guest molecules (Thalladi et al., 2000; Kadzewski & Gdaniec, 2006). In the course of our studies on molecular complexes of diazaaromatic heterocycles we cocrystallized quinoxaline with 3-aminophenol expecting to obtain ladder-type assemblies analogous to those observed in cocrystals of bipyridines with 3-aminophenol (Sokolov et al., 2006). Unfortunately, the molecular complex with the expected 2:1 component ratio crystallized as a dihydrate (Fig. 1) that had a significant impact on the organization of molecules in the crystal.
Crystal packing of the title compound is shown in Fig. 2. The asymmetric unit contains two quinoxaline molecules, one 3-aminophenol molecule and two water molecules. The water molecules are hydrogen-bonded (for the hydrogen-bond geometry see Table 2) to form a helix extending along the b axis with the amino group of the 3-aminophenol linked to the helix via N—H···O interactions in the manner shown in Fig. 3a. The quinoxaline B molecules join to this assembly via hydrogen bonds to the phenolic OH groups whereas the quinoxaline A molecules bridge the water helices via O—H···N bonding and π–π stacking interactions generating a supramolecular two dimensional polymeric structure (Figure 3 b). The quinoxaline B molecules are also organized into π–π stacks extending along the b axis. The B molecules in the stacks are related by a screw-axis and are slightly tilted [dihedral angle of 7.12 (1)°] whereas the A molecules are parallel and related by inversion centers [interplanar distances of 3.376 (4) and 3.473 (4) Å].
Experimental
The title compound was obtained by dissolving quinoxaline (0.2 g, 1.54 mmol) and 3-aminophenol (0.084 g, 0.77 mmol) in 5 ml of methanol followed slow evaporation to yield colorless plates suitable for data collection.
Refinement
All H atoms were located in electron-density difference maps. C-bonded H atoms were placed at calculated positions, with C—H = 0.93 Å, and were refined as riding on their carrier C atoms, with Uĩso~(H) = 1.2Ueq(C). The H atoms of the OH and NH groups were freely refined (coordinates and isotropic displacement parameters).
Figures
Fig. 1.
: The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
: Crystal packing viewed down the y axis. Hydrogen bonds are shown with dashed lines.
Fig. 3.
a) the H2O helix with the 3-aminophenol molecules attached to the helix via hydrogen bonds to the amino group, b) two-dimensional polymeric structure formed by hydrogen-bonded quinoxaline A molecules and water molecules.
Crystal data
| 2C8H6N2·C6H7NO·2H2O | F000 = 856 |
| Mr = 405.45 | Dx = 1.309 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 5665 reflections |
| a = 15.2951 (10) Å | θ = 2.1–27.9º |
| b = 7.1383 (4) Å | µ = 0.09 mm−1 |
| c = 20.1614 (14) Å | T = 130.0 (2) K |
| β = 110.775 (8)º | Plate, colourless |
| V = 2058.1 (3) Å3 | 0.40 × 0.40 × 0.07 mm |
| Z = 4 |
Data collection
| Kuma KM-4-CCD κ-geometry diffractometer | 3620 independent reflections |
| Radiation source: fine-focus sealed tube | 2285 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.037 |
| T = 130(2) K | θmax = 25.0º |
| ω scans | θmin = 4.1º |
| Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) | h = −18→17 |
| Tmin = 0.966, Tmax = 1.000 | k = −8→8 |
| 16706 measured reflections | l = −23→23 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0362P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.070 | (Δ/σ)max = 0.001 |
| S = 0.91 | Δρmax = 0.20 e Å−3 |
| 3620 reflections | Δρmin = −0.14 e Å−3 |
| 300 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0029 (5) |
| Secondary atom site location: difference Fourier map |
Special details
| Experimental. Absorption correction: SCALE3 ABSPACK scaling algorithm of the Crysalis RED program (Oxford Diffraction, 2007) |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1A | 0.40385 (8) | 0.19751 (16) | 0.55810 (6) | 0.0257 (3) | |
| C2A | 0.33478 (10) | 0.1595 (2) | 0.49872 (7) | 0.0268 (4) | |
| H2A | 0.2767 | 0.1284 | 0.5008 | 0.032* | |
| C3A | 0.34523 (10) | 0.1639 (2) | 0.43241 (8) | 0.0272 (4) | |
| H3A | 0.2937 | 0.1354 | 0.3923 | 0.033* | |
| N4A | 0.42444 (8) | 0.20642 (17) | 0.42434 (6) | 0.0257 (3) | |
| C5A | 0.58438 (10) | 0.3015 (2) | 0.48061 (8) | 0.0295 (4) | |
| H5A | 0.5917 | 0.3043 | 0.4368 | 0.035* | |
| C6A | 0.65726 (10) | 0.3465 (2) | 0.54049 (9) | 0.0346 (4) | |
| H6A | 0.7144 | 0.3799 | 0.5373 | 0.042* | |
| C7A | 0.64723 (10) | 0.3431 (2) | 0.60726 (8) | 0.0346 (4) | |
| H7A | 0.6977 | 0.3744 | 0.6477 | 0.042* | |
| C8A | 0.56397 (10) | 0.2943 (2) | 0.61310 (8) | 0.0295 (4) | |
| H8A | 0.5578 | 0.2925 | 0.6574 | 0.035* | |
| C9A | 0.48741 (9) | 0.24661 (19) | 0.55196 (7) | 0.0223 (3) | |
| C10A | 0.49775 (9) | 0.25055 (19) | 0.48513 (7) | 0.0215 (3) | |
| N1B | −0.01606 (8) | 0.88628 (16) | 0.35287 (6) | 0.0237 (3) | |
| C2B | −0.10425 (10) | 0.88544 (19) | 0.34628 (7) | 0.0257 (4) | |
| H2B | −0.1194 | 0.8923 | 0.3870 | 0.031* | |
| C3B | −0.17739 (10) | 0.8745 (2) | 0.27975 (8) | 0.0294 (4) | |
| H3B | −0.2388 | 0.8749 | 0.2785 | 0.035* | |
| N4B | −0.16252 (8) | 0.86390 (17) | 0.21969 (6) | 0.0297 (3) | |
| C5B | −0.04863 (11) | 0.8530 (2) | 0.16312 (7) | 0.0312 (4) | |
| H5B | −0.0964 | 0.8453 | 0.1191 | 0.037* | |
| C6B | 0.04198 (11) | 0.8538 (2) | 0.16717 (8) | 0.0333 (4) | |
| H6B | 0.0558 | 0.8487 | 0.1259 | 0.040* | |
| C7B | 0.11481 (11) | 0.8625 (2) | 0.23343 (8) | 0.0331 (4) | |
| H7B | 0.1766 | 0.8617 | 0.2357 | 0.040* | |
| C8B | 0.09583 (10) | 0.8720 (2) | 0.29450 (8) | 0.0294 (4) | |
| H8B | 0.1445 | 0.8775 | 0.3381 | 0.035* | |
| C9B | 0.00272 (9) | 0.87338 (19) | 0.29139 (7) | 0.0210 (3) | |
| C10B | −0.07063 (10) | 0.86356 (19) | 0.22497 (7) | 0.0229 (3) | |
| C1C | 0.15035 (9) | 0.7993 (2) | 0.52107 (7) | 0.0208 (3) | |
| O1C | 0.11852 (7) | 0.96292 (14) | 0.48513 (5) | 0.0286 (3) | |
| H1C | 0.0737 (11) | 0.936 (2) | 0.4413 (9) | 0.061 (6)* | |
| C2C | 0.22485 (9) | 0.8116 (2) | 0.58454 (7) | 0.0217 (3) | |
| H2C | 0.2511 | 0.9280 | 0.6007 | 0.026* | |
| C3C | 0.26114 (9) | 0.6520 (2) | 0.62471 (7) | 0.0240 (4) | |
| N1C | 0.33268 (10) | 0.6689 (2) | 0.68974 (8) | 0.0443 (4) | |
| H2NC | 0.3584 (10) | 0.561 (2) | 0.7146 (8) | 0.044 (5)* | |
| H1NC | 0.3613 (10) | 0.780 (2) | 0.6997 (8) | 0.037 (5)* | |
| C4C | 0.22258 (9) | 0.4776 (2) | 0.59862 (7) | 0.0274 (4) | |
| H4C | 0.2472 | 0.3690 | 0.6238 | 0.033* | |
| C5C | 0.14761 (10) | 0.4673 (2) | 0.53511 (7) | 0.0268 (4) | |
| H5C | 0.1218 | 0.3509 | 0.5183 | 0.032* | |
| C6C | 0.11020 (9) | 0.6262 (2) | 0.49608 (7) | 0.0249 (4) | |
| H6C | 0.0592 | 0.6176 | 0.4539 | 0.030* | |
| O1D | 0.40947 (7) | 0.06594 (16) | 0.69381 (7) | 0.0325 (3) | |
| H1D | 0.4028 (12) | 0.121 (3) | 0.6539 (11) | 0.071 (7)* | |
| H2D | 0.4209 (13) | 0.161 (3) | 0.7281 (11) | 0.089 (8)* | |
| O1E | 0.43284 (8) | 0.14985 (16) | 0.28706 (6) | 0.0320 (3) | |
| H1E | 0.4870 (14) | 0.078 (3) | 0.2927 (10) | 0.086 (7)* | |
| H2E | 0.4315 (12) | 0.175 (3) | 0.3316 (11) | 0.077 (7)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1A | 0.0264 (7) | 0.0255 (8) | 0.0254 (7) | −0.0008 (5) | 0.0097 (6) | 0.0018 (5) |
| C2A | 0.0243 (8) | 0.0269 (10) | 0.0292 (9) | −0.0017 (7) | 0.0095 (7) | 0.0011 (7) |
| C3A | 0.0255 (9) | 0.0251 (10) | 0.0263 (9) | −0.0008 (7) | 0.0036 (7) | −0.0005 (7) |
| N4A | 0.0280 (7) | 0.0239 (7) | 0.0249 (7) | 0.0011 (5) | 0.0090 (6) | 0.0006 (5) |
| C5A | 0.0293 (9) | 0.0268 (10) | 0.0378 (10) | 0.0035 (7) | 0.0185 (8) | 0.0019 (7) |
| C6A | 0.0228 (9) | 0.0256 (10) | 0.0568 (12) | −0.0007 (7) | 0.0158 (8) | −0.0005 (8) |
| C7A | 0.0274 (9) | 0.0274 (10) | 0.0396 (10) | 0.0002 (7) | 0.0001 (8) | −0.0030 (8) |
| C8A | 0.0312 (9) | 0.0283 (9) | 0.0253 (9) | −0.0006 (7) | 0.0054 (7) | −0.0015 (7) |
| C9A | 0.0239 (8) | 0.0169 (9) | 0.0256 (9) | 0.0009 (6) | 0.0083 (7) | 0.0018 (6) |
| C10A | 0.0247 (8) | 0.0155 (9) | 0.0248 (9) | 0.0030 (6) | 0.0094 (7) | 0.0005 (6) |
| N1B | 0.0234 (7) | 0.0231 (8) | 0.0242 (7) | 0.0012 (5) | 0.0078 (6) | 0.0024 (5) |
| C2B | 0.0298 (9) | 0.0242 (9) | 0.0269 (9) | 0.0032 (7) | 0.0146 (7) | 0.0049 (7) |
| C3B | 0.0218 (8) | 0.0331 (10) | 0.0348 (10) | 0.0012 (7) | 0.0120 (7) | 0.0063 (7) |
| N4B | 0.0254 (7) | 0.0345 (9) | 0.0283 (7) | 0.0002 (6) | 0.0083 (6) | 0.0050 (6) |
| C5B | 0.0410 (10) | 0.0298 (10) | 0.0233 (9) | 0.0000 (7) | 0.0120 (8) | 0.0015 (7) |
| C6B | 0.0486 (11) | 0.0281 (10) | 0.0331 (10) | 0.0024 (8) | 0.0266 (8) | 0.0046 (7) |
| C7B | 0.0314 (9) | 0.0270 (10) | 0.0492 (11) | 0.0029 (7) | 0.0246 (8) | 0.0043 (8) |
| C8B | 0.0233 (9) | 0.0296 (10) | 0.0339 (9) | 0.0026 (7) | 0.0084 (7) | 0.0029 (7) |
| C9B | 0.0241 (8) | 0.0164 (8) | 0.0235 (8) | 0.0019 (6) | 0.0099 (7) | 0.0027 (6) |
| C10B | 0.0261 (8) | 0.0183 (9) | 0.0247 (8) | 0.0013 (6) | 0.0093 (7) | 0.0038 (6) |
| C1C | 0.0210 (8) | 0.0218 (9) | 0.0215 (8) | 0.0031 (7) | 0.0100 (7) | 0.0026 (7) |
| O1C | 0.0286 (6) | 0.0246 (7) | 0.0255 (6) | −0.0010 (5) | 0.0009 (5) | 0.0019 (5) |
| C2C | 0.0192 (8) | 0.0232 (9) | 0.0239 (8) | −0.0042 (6) | 0.0088 (6) | −0.0024 (6) |
| C3C | 0.0173 (8) | 0.0311 (10) | 0.0243 (8) | −0.0010 (7) | 0.0082 (7) | 0.0038 (7) |
| N1C | 0.0365 (9) | 0.0366 (10) | 0.0408 (9) | −0.0100 (8) | −0.0099 (7) | 0.0144 (8) |
| C4C | 0.0256 (9) | 0.0270 (10) | 0.0314 (9) | 0.0025 (7) | 0.0124 (7) | 0.0085 (7) |
| C5C | 0.0298 (9) | 0.0236 (9) | 0.0294 (9) | −0.0049 (7) | 0.0136 (7) | −0.0030 (7) |
| C6C | 0.0244 (8) | 0.0272 (10) | 0.0221 (8) | −0.0031 (7) | 0.0069 (7) | −0.0014 (7) |
| O1D | 0.0400 (7) | 0.0326 (7) | 0.0252 (7) | −0.0059 (5) | 0.0119 (5) | −0.0024 (6) |
| O1E | 0.0382 (7) | 0.0348 (7) | 0.0229 (6) | 0.0000 (5) | 0.0106 (5) | 0.0005 (5) |
Geometric parameters (Å, °)
| N1A—C2A | 1.3136 (16) | C6B—C7B | 1.405 (2) |
| N1A—C9A | 1.3725 (17) | C6B—H6B | 0.9300 |
| C2A—C3A | 1.402 (2) | C7B—C8B | 1.363 (2) |
| C2A—H2A | 0.9300 | C7B—H7B | 0.9300 |
| C3A—N4A | 1.3138 (17) | C8B—C9B | 1.4031 (18) |
| C3A—H3A | 0.9300 | C8B—H8B | 0.9300 |
| N4A—C10A | 1.3726 (16) | C9B—C10B | 1.4111 (18) |
| C5A—C6A | 1.3597 (19) | C1C—O1C | 1.3697 (16) |
| C5A—C10A | 1.4078 (18) | C1C—C2C | 1.3818 (17) |
| C5A—H5A | 0.9300 | C1C—C6C | 1.3919 (19) |
| C6A—C7A | 1.408 (2) | O1C—H1C | 0.927 (17) |
| C6A—H6A | 0.9300 | C2C—C3C | 1.3940 (19) |
| C7A—C8A | 1.365 (2) | C2C—H2C | 0.9300 |
| C7A—H7A | 0.9300 | C3C—N1C | 1.3832 (18) |
| C8A—C9A | 1.4080 (18) | C3C—C4C | 1.398 (2) |
| C8A—H8A | 0.9300 | N1C—H2NC | 0.927 (16) |
| C9A—C10A | 1.4116 (19) | N1C—H1NC | 0.891 (16) |
| N1B—C2B | 1.3077 (16) | C4C—C5C | 1.3850 (18) |
| N1B—C9B | 1.3711 (17) | C4C—H4C | 0.9300 |
| C2B—C3B | 1.4114 (19) | C5C—C6C | 1.3839 (19) |
| C2B—H2B | 0.9300 | C5C—H5C | 0.9300 |
| C3B—N4B | 1.3112 (18) | C6C—H6C | 0.9300 |
| C3B—H3B | 0.9300 | O1D—H1D | 0.87 (2) |
| N4B—C10B | 1.3714 (16) | O1D—H2D | 0.94 (2) |
| C5B—C6B | 1.3591 (19) | O1E—H1E | 0.95 (2) |
| C5B—C10B | 1.404 (2) | O1E—H2E | 0.92 (2) |
| C5B—H5B | 0.9300 | ||
| C2A—N1A—C9A | 116.37 (12) | C5B—C6B—H6B | 119.8 |
| N1A—C2A—C3A | 122.51 (14) | C7B—C6B—H6B | 119.8 |
| N1A—C2A—H2A | 118.7 | C8B—C7B—C6B | 120.66 (14) |
| C3A—C2A—H2A | 118.7 | C8B—C7B—H7B | 119.7 |
| N4A—C3A—C2A | 123.05 (13) | C6B—C7B—H7B | 119.7 |
| N4A—C3A—H3A | 118.5 | C7B—C8B—C9B | 119.86 (14) |
| C2A—C3A—H3A | 118.5 | C7B—C8B—H8B | 120.1 |
| C3A—N4A—C10A | 116.07 (12) | C9B—C8B—H8B | 120.1 |
| C6A—C5A—C10A | 119.83 (15) | N1B—C9B—C8B | 119.66 (12) |
| C6A—C5A—H5A | 120.1 | N1B—C9B—C10B | 120.68 (12) |
| C10A—C5A—H5A | 120.1 | C8B—C9B—C10B | 119.65 (13) |
| C5A—C6A—C7A | 120.79 (15) | N4B—C10B—C5B | 119.54 (13) |
| C5A—C6A—H6A | 119.6 | N4B—C10B—C9B | 121.44 (13) |
| C7A—C6A—H6A | 119.6 | C5B—C10B—C9B | 119.02 (13) |
| C8A—C7A—C6A | 120.54 (14) | O1C—C1C—C2C | 117.20 (13) |
| C8A—C7A—H7A | 119.7 | O1C—C1C—C6C | 122.48 (12) |
| C6A—C7A—H7A | 119.7 | C2C—C1C—C6C | 120.32 (13) |
| C7A—C8A—C9A | 119.86 (14) | C1C—O1C—H1C | 109.2 (11) |
| C7A—C8A—H8A | 120.1 | C1C—C2C—C3C | 120.90 (13) |
| C9A—C8A—H8A | 120.1 | C1C—C2C—H2C | 119.6 |
| N1A—C9A—C8A | 119.65 (13) | C3C—C2C—H2C | 119.6 |
| N1A—C9A—C10A | 120.96 (12) | N1C—C3C—C2C | 119.84 (14) |
| C8A—C9A—C10A | 119.40 (13) | N1C—C3C—C4C | 121.36 (14) |
| N4A—C10A—C5A | 119.40 (13) | C2C—C3C—C4C | 118.78 (13) |
| N4A—C10A—C9A | 121.01 (13) | C3C—N1C—H2NC | 118.7 (10) |
| C5A—C10A—C9A | 119.59 (13) | C3C—N1C—H1NC | 116.8 (10) |
| C2B—N1B—C9B | 116.56 (11) | H2NC—N1C—H1NC | 122.4 (14) |
| N1B—C2B—C3B | 122.56 (14) | C5C—C4C—C3C | 119.71 (13) |
| N1B—C2B—H2B | 118.7 | C5C—C4C—H4C | 120.1 |
| C3B—C2B—H2B | 118.7 | C3C—C4C—H4C | 120.1 |
| N4B—C3B—C2B | 122.83 (14) | C6C—C5C—C4C | 121.45 (14) |
| N4B—C3B—H3B | 118.6 | C6C—C5C—H5C | 119.3 |
| C2B—C3B—H3B | 118.6 | C4C—C5C—H5C | 119.3 |
| C3B—N4B—C10B | 115.92 (12) | C5C—C6C—C1C | 118.79 (13) |
| C6B—C5B—C10B | 120.46 (14) | C5C—C6C—H6C | 120.6 |
| C6B—C5B—H5B | 119.8 | C1C—C6C—H6C | 120.6 |
| C10B—C5B—H5B | 119.8 | H1D—O1D—H2D | 106.6 (18) |
| C5B—C6B—C7B | 120.34 (14) | H1E—O1E—H2E | 107.9 (16) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1C—H1C···N1B | 0.927 (17) | 1.857 (17) | 2.7844 (14) | 178.7 (16) |
| N1C—H2NC···O1Ei | 0.927 (16) | 2.125 (17) | 3.0400 (19) | 168.8 (14) |
| N1C—H1NC···O1Dii | 0.891 (16) | 2.191 (17) | 3.058 (2) | 164.4 (13) |
| O1D—H1D···N1A | 0.87 (2) | 2.01 (2) | 2.8651 (17) | 166.8 (17) |
| O1D—H2D···O1Ei | 0.94 (2) | 1.77 (2) | 2.7022 (16) | 174.5 (19) |
| O1E—H1E···O1Diii | 0.95 (2) | 1.82 (2) | 2.7711 (17) | 177.8 (19) |
| O1E—H2E···N4A | 0.92 (2) | 1.92 (2) | 2.8446 (16) | 175.4 (18) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) −x+1, −y, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2194).
References
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Kadzewski, A. & Gdaniec, M. (2006). Acta Cryst. E62, o3498–o3500.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sokolov, A. N., Friščić, T., Blais, S., Ripmeester, J. A. & MacGillivray, L. R. (2006). Cryst. Growth Des.6, 2427–2428.
- Sokolov, A. N. & MacGillivray, L. R. (2006). Cryst. Growth Des.6, 2615–2624.
- Thalladi, V. R., Smolka, T., Boese, R. & Sustmann, R. (2000). CrystEngComm, 2, 96–101.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010568/fl2194sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010568/fl2194Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



