Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 18;64(Pt 5):o873. doi: 10.1107/S1600536808010052

2,4-Dinitro-1-naphthyl 4-toluene­sulfonate

G Ramachandran a, Charles Christopher Kanakam a, V Manivannan b,*
PMCID: PMC2961114  PMID: 21202359

Abstract

In the title compound, C17H12N2O7S, the dihedral angle between the benzene ring and the naphthyl plane is 26.34 (6)°. The nitro groups make dihedral angles of 40.09 (4) and 37.05 (3)° with the naphthyl plane. In the crystal structure, weak intra- and inter­molecular C—H⋯O inter­actions are observed.

Related literature

For biological activity, see: Yachi et al. (1989). For the structure of closely related compounds, see: Manivannan et al. (2005a ,b ). graphic file with name e-64-0o873-scheme1.jpg

Experimental

Crystal data

  • C17H12N2O7S

  • M r = 388.35

  • Monoclinic, Inline graphic

  • a = 13.071 (2) Å

  • b = 7.8660 (13) Å

  • c = 16.595 (3) Å

  • β = 90.757 (3)°

  • V = 1706.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 (2) K

  • 0.36 × 0.25 × 0.13 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.920, T max = 0.970

  • 12222 measured reflections

  • 3116 independent reflections

  • 2291 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.104

  • S = 1.02

  • 3116 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010052/is2287sup1.cif

e-64-0o873-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010052/is2287Isup2.hkl

e-64-0o873-Isup2.hkl (149.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5 0.93 2.55 3.194 (3) 127
C14—H14⋯O7 0.93 2.33 2.895 (3) 119
C17—H17⋯O3 0.93 2.48 2.798 (3) 100
C10—H10⋯O1i 0.93 2.45 3.327 (3) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge Professor T. N. Guru Row and Dr Vijay Thiruvenkatam, Indian Institute of Science, Bangalore, India, for the data collection.

supplementary crystallographic information

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989). The geometric parameters in the title compound agree with the reported values of similar structures (Manivannan et al., 2005a,b). The dihedral angle between the mean planes of phenyl and naphthyl rings is 26.34 (6)°. The planes N1/O5/O4 and N2/O6/O7 make the dihedral angles of 40.09 (4) and 37.05 (3)°, respectively, with the naphthyl ring. The torsion angles [O1—S1—C1—C6 = -17.0 (2)° and O2—S1—C1—C2 = 27.9 (2)°] indicate a syn conformation of the sulfonyl moiety.

In addition to this, because of the presence of highly electron attracting nitro groups, there are strong dipole-dipole attractions between different molecules in the lattice arrangement. The nitro group substituted naphthylring, which is electron deficient is found to be lying over the electron rich tolyl benzene ring of another molecule in the lattice. This leads to a sort of charge transfer complex.

The enhanced stability of this compound and larger stability of the lattice when compared to other sulfonates reported already, is supported by thermoanalytic studies. This compound is having higher density, melting point and higher lattice energy when compared to others. Another interesting property of this compound is that it possesses antibacterial activity almost equivalent to those of antibiotics. This is attributed to the elongation of the S—O (S1—O3) bond in –S—O–naphthyl ring such that the dissociation to naphthoxy moiety is facilitated. The facile formation of the naphthoxy radical is further supported by the high intensity peak for this specy in the Mass spectra. Kinetic studies also indicate that the rate of hydrolysis (rate of cleavage of the –S—O– bond) is very high when compared to other toluene sulfonates reported already.

The molecular structure is stabilized by weak intramolecular C—H···O interactions and the crystal packing of (I) (Fig. 2) is stabilized by weak intermolecular C—H···O interactions.

Experimental

Calculated quantity of (10 mmol) of alpha naphthol was dissolved in hot con. sulfuric acid (10 ml) and heated for 10 minutes over a water bath to get disulfonic acid. To this was added (10 ml) of fuming nitric acid in small quantity at a time with stirring. After the addition was over the reaction mixture was kept aside for an hour. It was poured into crushed ice with stirring. The precipitate was filtered, washed with cold water, dried and recrystallized from rectified spirit.

A solution of the above 2,4-dinitronaphthol and triethylamine in acetone was treated with sulfonyl chloride in acetone. This was left as such overnight. The solvent was evaporated and the residue was washed with triethylamine solution. The crude product was recrystallized from ethanol to get diffraction quality crystal of 2,4-dintro-1-naphthyl-4-toluene sulfonate.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C17H12N2O7S F000 = 800
Mr = 388.35 Dx = 1.512 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4023 reflections
a = 13.071 (2) Å θ = 1.8–25.2º
b = 7.8660 (13) Å µ = 0.24 mm1
c = 16.595 (3) Å T = 295 (2) K
β = 90.757 (3)º Block, colourless
V = 1706.0 (5) Å3 0.36 × 0.25 × 0.13 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 3116 independent reflections
Radiation source: fine-focus sealed tube 2291 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
T = 295(2) K θmax = 25.4º
ω and φ scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.920, Tmax = 0.970 k = −9→9
12222 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.104   w = 1/[σ2(Fo2) + (0.0486P)2 + 0.4765P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3116 reflections Δρmax = 0.20 e Å3
245 parameters Δρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.75961 (5) 0.14928 (8) 0.91732 (3) 0.04636 (19)
N2 0.47400 (18) 0.4441 (3) 1.21402 (12) 0.0509 (5)
N1 0.77051 (15) 0.1383 (3) 1.12836 (11) 0.0511 (5)
C8 0.62399 (17) 0.1694 (3) 1.03092 (12) 0.0379 (5)
C9 0.66905 (17) 0.2018 (3) 1.10432 (13) 0.0396 (5)
C10 0.61838 (18) 0.2985 (3) 1.16206 (13) 0.0418 (5)
H10 0.6505 0.3244 1.2109 0.050*
C11 0.52268 (18) 0.3540 (3) 1.14659 (12) 0.0394 (5)
C12 0.47017 (17) 0.3258 (3) 1.07210 (12) 0.0383 (5)
C13 0.52516 (16) 0.2336 (3) 1.01249 (12) 0.0366 (5)
C14 0.37180 (18) 0.3875 (3) 1.05167 (14) 0.0462 (6)
H14 0.3347 0.4476 1.0897 0.055*
C15 0.33082 (18) 0.3603 (3) 0.97732 (15) 0.0502 (6)
H15 0.2658 0.4016 0.9651 0.060*
C16 0.38494 (19) 0.2709 (3) 0.91879 (15) 0.0494 (6)
H16 0.3558 0.2542 0.8680 0.059*
C17 0.47966 (18) 0.2082 (3) 0.93546 (13) 0.0421 (5)
H17 0.5148 0.1484 0.8962 0.051*
C1 0.82025 (17) −0.0380 (3) 0.88993 (14) 0.0467 (6)
C4 0.9179 (2) −0.3362 (4) 0.84598 (18) 0.0639 (7)
C2 0.8941 (2) −0.1075 (4) 0.94025 (17) 0.0660 (8)
H2 0.9113 −0.0548 0.9888 0.079*
C3 0.9421 (2) −0.2557 (4) 0.91778 (19) 0.0744 (9)
H3 0.9918 −0.3026 0.9516 0.089*
C6 0.7943 (2) −0.1167 (4) 0.81845 (15) 0.0583 (7)
H6 0.7439 −0.0708 0.7848 0.070*
C5 0.8437 (2) −0.2639 (4) 0.79741 (18) 0.0671 (8)
H5 0.8264 −0.3163 0.7489 0.081*
C7 0.9719 (2) −0.4974 (4) 0.8216 (2) 0.0947 (11)
H7A 1.0222 −0.4715 0.7818 0.142*
H7B 0.9230 −0.5762 0.7995 0.142*
H7C 1.0049 −0.5470 0.8680 0.142*
O1 0.70983 (14) 0.2246 (2) 0.84979 (9) 0.0613 (5)
O2 0.82266 (13) 0.2523 (2) 0.96766 (10) 0.0584 (5)
O3 0.67103 (11) 0.06829 (18) 0.97377 (8) 0.0431 (4)
O4 0.82359 (15) 0.2326 (3) 1.16921 (12) 0.0810 (6)
O5 0.79512 (14) −0.0046 (3) 1.10830 (11) 0.0644 (5)
O6 0.53013 (16) 0.5300 (3) 1.25734 (11) 0.0738 (6)
O7 0.38300 (16) 0.4246 (3) 1.22514 (11) 0.0713 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0527 (4) 0.0503 (4) 0.0362 (3) −0.0065 (3) 0.0072 (3) −0.0017 (3)
N2 0.0698 (15) 0.0451 (12) 0.0382 (11) 0.0054 (11) 0.0093 (11) 0.0005 (9)
N1 0.0516 (13) 0.0644 (15) 0.0372 (11) −0.0010 (12) −0.0001 (9) 0.0005 (11)
C8 0.0473 (13) 0.0341 (12) 0.0324 (11) −0.0068 (10) 0.0055 (10) 0.0000 (9)
C9 0.0447 (13) 0.0384 (12) 0.0358 (12) −0.0044 (10) 0.0001 (10) 0.0041 (10)
C10 0.0582 (15) 0.0389 (12) 0.0285 (11) −0.0081 (11) 0.0000 (10) 0.0002 (10)
C11 0.0532 (14) 0.0313 (11) 0.0338 (11) −0.0022 (10) 0.0087 (10) 0.0017 (9)
C12 0.0485 (13) 0.0300 (11) 0.0364 (12) −0.0069 (10) 0.0043 (10) 0.0048 (9)
C13 0.0446 (13) 0.0309 (11) 0.0344 (11) −0.0090 (10) 0.0013 (10) 0.0028 (9)
C14 0.0521 (14) 0.0383 (13) 0.0485 (14) −0.0017 (11) 0.0078 (11) 0.0060 (11)
C15 0.0448 (14) 0.0490 (14) 0.0566 (15) −0.0038 (11) −0.0045 (12) 0.0106 (13)
C16 0.0564 (15) 0.0488 (14) 0.0427 (13) −0.0126 (12) −0.0088 (12) 0.0061 (11)
C17 0.0517 (14) 0.0394 (12) 0.0352 (12) −0.0088 (11) 0.0001 (10) 0.0011 (10)
C1 0.0405 (13) 0.0579 (15) 0.0420 (13) −0.0071 (11) 0.0076 (11) −0.0057 (11)
C4 0.0484 (15) 0.0653 (18) 0.078 (2) −0.0063 (14) 0.0158 (14) −0.0175 (16)
C2 0.0531 (16) 0.087 (2) 0.0578 (16) 0.0052 (15) −0.0036 (13) −0.0213 (15)
C3 0.0555 (17) 0.089 (2) 0.079 (2) 0.0164 (16) −0.0041 (15) −0.0103 (18)
C6 0.0564 (16) 0.0690 (18) 0.0496 (15) 0.0026 (14) 0.0009 (12) −0.0111 (13)
C5 0.0612 (17) 0.076 (2) 0.0641 (18) −0.0081 (15) 0.0040 (14) −0.0264 (16)
C7 0.075 (2) 0.077 (2) 0.133 (3) 0.0067 (18) 0.022 (2) −0.028 (2)
O1 0.0794 (12) 0.0660 (12) 0.0387 (9) 0.0039 (9) 0.0059 (9) 0.0086 (8)
O2 0.0630 (11) 0.0584 (11) 0.0539 (10) −0.0189 (9) 0.0080 (8) −0.0100 (9)
O3 0.0514 (9) 0.0404 (9) 0.0377 (8) −0.0031 (7) 0.0076 (7) −0.0054 (7)
O4 0.0617 (12) 0.1075 (17) 0.0734 (13) −0.0049 (11) −0.0180 (11) −0.0267 (12)
O5 0.0660 (12) 0.0632 (12) 0.0640 (12) 0.0149 (10) −0.0005 (9) 0.0042 (10)
O6 0.0898 (15) 0.0723 (13) 0.0593 (12) 0.0021 (11) 0.0009 (11) −0.0308 (10)
O7 0.0664 (13) 0.0885 (15) 0.0596 (12) 0.0031 (11) 0.0229 (10) −0.0065 (10)

Geometric parameters (Å, °)

S1—O1 1.4179 (17) C14—H14 0.9300
S1—O2 1.4196 (16) C15—C16 1.399 (3)
S1—O3 1.6287 (16) C15—H15 0.9300
S1—C1 1.736 (3) C16—C17 1.358 (3)
N2—O7 1.216 (3) C16—H16 0.9300
N2—O6 1.224 (3) C17—H17 0.9300
N2—C11 1.476 (3) C1—C6 1.377 (3)
N1—O4 1.216 (3) C1—C2 1.381 (3)
N1—O5 1.216 (3) C4—C5 1.376 (4)
N1—C9 1.467 (3) C4—C3 1.382 (4)
C8—C9 1.370 (3) C4—C7 1.509 (4)
C8—O3 1.388 (2) C2—C3 1.378 (4)
C8—C13 1.416 (3) C2—H2 0.9300
C9—C10 1.397 (3) C3—H3 0.9300
C10—C11 1.346 (3) C6—C5 1.373 (4)
C10—H10 0.9300 C6—H6 0.9300
C11—C12 1.423 (3) C5—H5 0.9300
C12—C14 1.411 (3) C7—H7A 0.9600
C12—C13 1.429 (3) C7—H7B 0.9600
C13—C17 1.417 (3) C7—H7C 0.9600
C14—C15 1.356 (3)
O1—S1—O2 118.91 (11) C14—C15—H15 119.5
O1—S1—O3 107.20 (10) C16—C15—H15 119.5
O2—S1—O3 107.24 (9) C17—C16—C15 120.6 (2)
O1—S1—C1 110.71 (11) C17—C16—H16 119.7
O2—S1—C1 112.01 (11) C15—C16—H16 119.7
O3—S1—C1 98.58 (10) C16—C17—C13 120.2 (2)
O7—N2—O6 124.1 (2) C16—C17—H17 119.9
O7—N2—C11 119.1 (2) C13—C17—H17 119.9
O6—N2—C11 116.7 (2) C6—C1—C2 120.4 (2)
O4—N1—O5 124.4 (2) C6—C1—S1 119.9 (2)
O4—N1—C9 116.8 (2) C2—C1—S1 119.70 (19)
O5—N1—C9 118.8 (2) C5—C4—C3 117.8 (3)
C9—C8—O3 121.7 (2) C5—C4—C7 121.3 (3)
C9—C8—C13 120.4 (2) C3—C4—C7 120.9 (3)
O3—C8—C13 117.89 (18) C3—C2—C1 119.2 (3)
C8—C9—C10 120.6 (2) C3—C2—H2 120.4
C8—C9—N1 123.7 (2) C1—C2—H2 120.4
C10—C9—N1 115.71 (19) C2—C3—C4 121.4 (3)
C11—C10—C9 119.6 (2) C2—C3—H3 119.3
C11—C10—H10 120.2 C4—C3—H3 119.3
C9—C10—H10 120.2 C5—C6—C1 119.2 (3)
C10—C11—C12 123.4 (2) C5—C6—H6 120.4
C10—C11—N2 114.8 (2) C1—C6—H6 120.4
C12—C11—N2 121.7 (2) C6—C5—C4 122.0 (3)
C14—C12—C11 125.6 (2) C6—C5—H5 119.0
C14—C12—C13 118.3 (2) C4—C5—H5 119.0
C11—C12—C13 116.1 (2) C4—C7—H7A 109.5
C8—C13—C17 121.0 (2) C4—C7—H7B 109.5
C8—C13—C12 119.83 (19) H7A—C7—H7B 109.5
C17—C13—C12 119.1 (2) C4—C7—H7C 109.5
C15—C14—C12 120.8 (2) H7A—C7—H7C 109.5
C15—C14—H14 119.6 H7B—C7—H7C 109.5
C12—C14—H14 119.6 C8—O3—S1 119.58 (13)
C14—C15—C16 120.9 (2)
O3—C8—C9—C10 −177.46 (19) C11—C12—C14—C15 176.7 (2)
C13—C8—C9—C10 0.0 (3) C13—C12—C14—C15 −0.2 (3)
O3—C8—C9—N1 1.8 (3) C12—C14—C15—C16 −0.2 (3)
C13—C8—C9—N1 179.21 (19) C14—C15—C16—C17 0.5 (3)
O4—N1—C9—C8 143.2 (2) C15—C16—C17—C13 −0.3 (3)
O5—N1—C9—C8 −38.6 (3) C8—C13—C17—C16 −179.9 (2)
O4—N1—C9—C10 −37.5 (3) C12—C13—C17—C16 −0.1 (3)
O5—N1—C9—C10 140.7 (2) O1—S1—C1—C6 −17.0 (2)
C8—C9—C10—C11 2.9 (3) O2—S1—C1—C6 −152.30 (19)
N1—C9—C10—C11 −176.4 (2) O3—S1—C1—C6 95.1 (2)
C9—C10—C11—C12 −2.8 (3) O1—S1—C1—C2 163.2 (2)
C9—C10—C11—N2 175.77 (19) O2—S1—C1—C2 27.9 (2)
O7—N2—C11—C10 −143.1 (2) O3—S1—C1—C2 −84.7 (2)
O6—N2—C11—C10 34.3 (3) C6—C1—C2—C3 0.5 (4)
O7—N2—C11—C12 35.5 (3) S1—C1—C2—C3 −179.7 (2)
O6—N2—C11—C12 −147.1 (2) C1—C2—C3—C4 0.0 (5)
C10—C11—C12—C14 −177.1 (2) C5—C4—C3—C2 −0.3 (4)
N2—C11—C12—C14 4.5 (3) C7—C4—C3—C2 179.2 (3)
C10—C11—C12—C13 −0.1 (3) C2—C1—C6—C5 −0.8 (4)
N2—C11—C12—C13 −178.59 (19) S1—C1—C6—C5 179.4 (2)
C9—C8—C13—C17 176.87 (19) C1—C6—C5—C4 0.6 (4)
O3—C8—C13—C17 −5.6 (3) C3—C4—C5—C6 0.0 (4)
C9—C8—C13—C12 −2.9 (3) C7—C4—C5—C6 −179.5 (3)
O3—C8—C13—C12 174.60 (17) C9—C8—O3—S1 −80.6 (2)
C14—C12—C13—C8 −179.86 (19) C13—C8—O3—S1 101.93 (19)
C11—C12—C13—C8 3.0 (3) O1—S1—O3—C8 −86.68 (17)
C14—C12—C13—C17 0.3 (3) O2—S1—O3—C8 42.07 (17)
C11—C12—C13—C17 −176.83 (19) C1—S1—O3—C8 158.41 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O5 0.93 2.55 3.194 (3) 127
C14—H14···O7 0.93 2.33 2.895 (3) 119
C17—H17···O3 0.93 2.48 2.798 (3) 100
C10—H10···O1i 0.93 2.45 3.327 (3) 157

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2287).

References

  1. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239–o241.
  3. Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242–o244.
  4. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1–7. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010052/is2287sup1.cif

e-64-0o873-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010052/is2287Isup2.hkl

e-64-0o873-Isup2.hkl (149.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES