Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 23;64(Pt 5):o887–o888. doi: 10.1107/S1600536808010428

Ethyl 1-(4-methoxy­phen­yl)-2-nitro-3-[4-oxo-3-phenyl-1-(4-methoxy­phen­yl)azetidin-2-yl]-2,3,10,10a-tetra­hydro-1H,5H-pyrrolo[1,2-b]isoquinoline-10a-carboxyl­ate

E Theboral Sugi Kamala a, S Nirmala a, L Sudha b,*, N Arumugam c, R Raghunathan c
PMCID: PMC2961124  PMID: 21202371

Abstract

In the mol­ecule of the title compound, C38H37N3O7, the pyrrolidine ring adopts a twist conformation and the six-membered heterocyclic ring has a boat conformation. In the crystal structure, mol­ecules are linked into a three-dimensional framework through inter­molecular C—H⋯O hydrogen bonds. One ethyl group is disordered over two positions with occupancies 0.67 (2)/0.33 (2).

Related literature

For related literature, see: Allen et al. (1987); Amal Raj et al. (2003); Borthwick et al. (2003); Brakhage (1998); Cremer & Pople (1975); Fernandes et al. (2004); Kamala et al. (2008); Katritzky et al. (1996); Morin & Gorman (1982); Nardelli (1983); Sundari et al. (2006); Verkman (1990); Weissman et al. (1993); Georg & Ravikumar (1993); LaVoie et al. (1983).graphic file with name e-64-0o887-scheme1.jpg

Experimental

Crystal data

  • C38H37N3O7

  • M r = 647.71

  • Orthorhombic, Inline graphic

  • a = 9.0149 (3) Å

  • b = 11.0865 (4) Å

  • c = 33.3731 (11) Å

  • V = 3335.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.982, T max = 0.982

  • 68599 measured reflections

  • 3960 independent reflections

  • 3318 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.107

  • S = 1.05

  • 3960 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010428/bt2696sup1.cif

e-64-0o887-sup1.cif (32.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010428/bt2696Isup2.hkl

e-64-0o887-Isup2.hkl (190.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.98 2.42 3.260 (3) 143
C20—H20⋯O1ii 0.93 2.47 3.397 (3) 172
C29—H29⋯O3 0.93 2.59 3.442 (3) 152
C29—H29⋯N2 0.93 2.50 3.168 (3) 128
C33—H33⋯O1 0.93 2.44 3.054 (4) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks SRM Management for their support.

supplementary crystallographic information

Comment

Quinoline is a hepatocarcinogen in mice and rats, a mutagen in Salmonella typhimurium and induces unscheduled DNA synthesis in primary cultures of rat hepatocytes (LaVoie et al., 1983). Quinolinium based chloride sensitive flourescent indicators provide a new approach to study chloride transport mechanisms and regulation (Verkman, 1990). Pyrrole derivatives inhibit cytokine-dependent induction of human immunodeficiency virus (HIV) expression in chronically infected promonocytic cells (Weissman et al., 1993). Pyrroles possess anti inflammatory (Fernandes et al., 2004), anti viral (Borthwick et al., 2003), antifungal and antimicrobial activities (Amal Raj et al., 2003). β lactams are one of the best known and most extensively studied class of compounds due to their biological activity (Morin & Gorman, 1982; Georg & Ravikumar, 1993; Katritzky et al., 1996). The most commonly used β lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). Due to these importance the crystal structure determination of the title compound (I) was carried out and the results are presented here.

Fig 1 shows a plot of compound (I). Bond lengths and angles are within normal ranges (Allen et al., 1987) and comparable with those of reported structures (Kamala et al., 2008; Sundari et al., 2006).

In the molecule the pyrrolidine ring exhibits a twist conformation with asymetry parameters (Nardelli,1983)ΔCs(C5) = 5.2 (2), ΔC2(C6) = 39.6 (2) and with the puckering parameters (Cremer and Pople, 1975) q2 = 0.274 (3)Å and φ2 =267.5 (5)°. The six membered ring C7/C8/C9/C14/C15/N2 exhibits a boat conformation with the puckering parameters Q=0.699 (3) Å, Θ = 88.8 (2)° and φ = 120.1 (2)°. The sum of bond angles around N1 [353.59°], and around N3 [359.94°] indicate sp2, those around atom N2 [338.58°] indicate sp3 hybridization. The pyrrolidine ring and the phenyl ring C9—C14 are nearly planar with each other with a dihedral angle of 9.49 (7)° while the phenyl rings are oriented at right angles to each other making an angle of 87.48 (7)°.

In the crystal packing, C—H···O interactions stabilize crystal structure.

Experimental

To a stirring solution of 1 mmol of 5-[1'-N-(p-methoxy)-phenyl)-3'-phenyl- azetidine-2'-one]-4-nitro-3-(p-methoxy)-phenyl-2-ethoxy carbonyl-2-benzyl -pyrrolidine in 20 ml of dry chloroform was added 1 mmol of paraformaldehyde followed by 0.1 mmol of trifluroacetic acid at room temperature. After completion of the reaction the mixture was washed with water and dried over Na2SO4. The solvent was removed under reduced pressure and the crude product was subjected to column chromatography with hexane ethylacetate (9:1) to obtain pure cyclized product. The compound was recrystallized from ethylacetae.

Refinement

In the absence of anomalous scatterers, Friedel pairs were merged and the absolute configuration was arbitrarily set. One ethyl group is disordered over two positions (C36A/C37A and C36B/C37B), with refined occupancies of 0.67 (2) and 0.33 (2). H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and Uiso(H)= 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of the molecules viewed along the c axis.

Crystal data

C38H37N3O7 F000 = 1368
Mr = 647.71 Dx = 1.290 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 68599 reflections
a = 9.0149 (3) Å θ = 1.2–26.7º
b = 11.0865 (4) Å µ = 0.09 mm1
c = 33.3731 (11) Å T = 293 (2) K
V = 3335.4 (2) Å3 Prism, colourless
Z = 4 0.20 × 0.20 × 0.20 mm

Data collection

Bruker KappaAPEX2 diffractometer 3960 independent reflections
Radiation source: fine-focus sealed tube 3318 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 293(2) K θmax = 26.7º
ω and φ scans θmin = 1.2º
Absorption correction: multi-scan(Blessing, 1995) h = −11→11
Tmin = 0.982, Tmax = 0.982 k = −13→13
68599 measured reflections l = −42→42

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034   w = 1/[σ2(Fo2) + (0.0606P)2 + 0.4467P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.14 e Å3
3960 reflections Δρmin = −0.16 e Å3
453 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0035 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5650 (3) 0.1895 (2) 0.11810 (7) 0.0428 (5)
H1 0.6078 0.1997 0.1449 0.051*
C2 0.6846 (3) 0.2110 (2) 0.08439 (7) 0.0465 (5)
H2 0.7811 0.2300 0.0964 0.056*
C3 0.6714 (3) 0.0759 (2) 0.07673 (7) 0.0518 (6)
C4 0.4217 (3) 0.26005 (18) 0.11375 (6) 0.0392 (5)
H4 0.3956 0.2613 0.0853 0.047*
C5 0.4352 (3) 0.3919 (2) 0.12799 (7) 0.0441 (5)
H5 0.4661 0.4435 0.1057 0.053*
C6 0.2805 (3) 0.4279 (2) 0.14202 (7) 0.0452 (5)
H6 0.2911 0.4792 0.1658 0.054*
C7 0.2091 (3) 0.3061 (2) 0.15540 (6) 0.0418 (5)
C8 0.0419 (3) 0.2946 (2) 0.14583 (8) 0.0509 (6)
H8A −0.0144 0.3490 0.1628 0.061*
H8B 0.0240 0.3164 0.1181 0.061*
C9 −0.0065 (3) 0.1674 (2) 0.15306 (7) 0.0481 (6)
C10 −0.1225 (3) 0.1330 (3) 0.17775 (8) 0.0601 (7)
H10 −0.1790 0.1911 0.1908 0.072*
C11 −0.1538 (4) 0.0124 (3) 0.18292 (9) 0.0702 (8)
H11 −0.2323 −0.0106 0.1993 0.084*
C12 −0.0702 (4) −0.0739 (3) 0.16414 (10) 0.0740 (9)
H12 −0.0926 −0.1551 0.1677 0.089*
C13 0.0469 (4) −0.0409 (3) 0.13991 (9) 0.0645 (7)
H13 0.1039 −0.0996 0.1273 0.077*
C14 0.0792 (3) 0.0797 (2) 0.13448 (7) 0.0505 (6)
C15 0.2094 (3) 0.1248 (2) 0.11103 (7) 0.0480 (5)
H15A 0.2717 0.0576 0.1032 0.058*
H15B 0.1752 0.1650 0.0869 0.058*
C16 0.1960 (3) 0.4982 (2) 0.11054 (7) 0.0469 (5)
C17 0.0909 (3) 0.5824 (2) 0.12263 (8) 0.0601 (7)
H17 0.0744 0.5938 0.1499 0.072*
C18 0.0110 (4) 0.6489 (2) 0.09578 (9) 0.0658 (7)
H18 −0.0600 0.7033 0.1048 0.079*
C19 0.0358 (3) 0.6354 (2) 0.05499 (8) 0.0592 (7)
C20 0.1387 (3) 0.5535 (3) 0.04209 (8) 0.0598 (7)
H20 0.1563 0.5437 0.0148 0.072*
C21 0.2168 (3) 0.4850 (2) 0.06968 (7) 0.0550 (6)
H21 0.2852 0.4286 0.0605 0.066*
C22 0.6510 (3) 0.2965 (2) 0.05059 (7) 0.0484 (5)
C23 0.7102 (4) 0.4110 (3) 0.05080 (9) 0.0628 (7)
H23 0.7770 0.4333 0.0707 0.075*
C24 0.6704 (4) 0.4931 (3) 0.02139 (11) 0.0822 (10)
H24 0.7105 0.5704 0.0218 0.099*
C25 0.5729 (4) 0.4619 (3) −0.00828 (10) 0.0822 (10)
H25 0.5448 0.5181 −0.0275 0.099*
C26 0.5175 (4) 0.3476 (3) −0.00931 (8) 0.0732 (9)
H26 0.4531 0.3252 −0.0298 0.088*
C27 0.5563 (3) 0.2648 (3) 0.01987 (7) 0.0563 (6)
H27 0.5182 0.1869 0.0188 0.068*
C28 0.5268 (3) −0.0417 (2) 0.12839 (7) 0.0471 (5)
C29 0.4518 (3) −0.0313 (2) 0.16414 (8) 0.0549 (6)
H29 0.4239 0.0446 0.1733 0.066*
C30 0.4176 (3) −0.1326 (2) 0.18659 (8) 0.0579 (7)
H30 0.3682 −0.1244 0.2109 0.069*
C31 0.4563 (4) −0.2445 (2) 0.17306 (8) 0.0583 (7)
C32 0.5345 (4) −0.2552 (2) 0.13739 (8) 0.0698 (8)
H32 0.5635 −0.3311 0.1286 0.084*
C33 0.5695 (4) −0.1558 (2) 0.11504 (8) 0.0615 (7)
H33 0.6214 −0.1642 0.0911 0.074*
C34 0.3451 (6) −0.3423 (3) 0.22891 (10) 0.1026 (15)
H34A 0.3317 −0.4215 0.2399 0.154*
H34B 0.2500 −0.3067 0.2236 0.154*
H34C 0.3984 −0.2930 0.2477 0.154*
C35 0.2155 (3) 0.2959 (2) 0.20132 (7) 0.0509 (6)
C36A 0.227 (2) 0.1693 (8) 0.2565 (2) 0.099 (4) 0.67 (2)
H36A 0.3178 0.1371 0.2677 0.119* 0.67 (2)
H36B 0.2132 0.2487 0.2681 0.119* 0.67 (2)
C36B 0.2763 (18) 0.166 (2) 0.2577 (7) 0.094 (8) 0.33 (2)
H36C 0.2370 0.2319 0.2737 0.113* 0.33 (2)
H36D 0.3801 0.1541 0.2641 0.113* 0.33 (2)
C37A 0.1243 (12) 0.1053 (17) 0.2693 (3) 0.113 (5) 0.67 (2)
H37A 0.1328 0.0977 0.2978 0.170* 0.67 (2)
H37B 0.1300 0.0269 0.2572 0.170* 0.67 (2)
H37C 0.0309 0.1419 0.2627 0.170* 0.67 (2)
C37B 0.182 (4) 0.0452 (14) 0.2633 (4) 0.130 (9) 0.33 (2)
H37D 0.1729 0.0272 0.2914 0.196* 0.33 (2)
H37E 0.2311 −0.0203 0.2500 0.196* 0.33 (2)
H37F 0.0849 0.0560 0.2520 0.196* 0.33 (2)
C38 −0.0228 (5) 0.6993 (3) −0.01129 (10) 0.0934 (11)
H38A −0.0871 0.7543 −0.0252 0.140*
H38B −0.0431 0.6184 −0.0199 0.140*
H38C 0.0786 0.7190 −0.0171 0.140*
N1 0.5645 (2) 0.06099 (17) 0.10584 (6) 0.0476 (5)
N2 0.2955 (2) 0.20995 (16) 0.13575 (5) 0.0402 (4)
N3 0.5465 (3) 0.40018 (18) 0.16171 (7) 0.0531 (5)
O1 0.7299 (3) 0.00518 (18) 0.05473 (6) 0.0730 (6)
O2 0.4270 (3) −0.35051 (16) 0.19254 (5) 0.0772 (7)
O3 0.2539 (2) 0.18744 (16) 0.21413 (5) 0.0614 (5)
O4 0.1785 (3) 0.37724 (19) 0.22274 (6) 0.0777 (6)
O5 −0.0475 (3) 0.70850 (19) 0.03026 (7) 0.0815 (6)
O6 0.5102 (2) 0.3667 (2) 0.19483 (6) 0.0699 (6)
O7 0.6700 (2) 0.4365 (2) 0.15328 (7) 0.0782 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0449 (12) 0.0404 (11) 0.0429 (11) −0.0039 (10) 0.0002 (10) 0.0047 (9)
C2 0.0392 (11) 0.0484 (13) 0.0519 (12) −0.0036 (10) 0.0007 (10) 0.0082 (10)
C3 0.0535 (14) 0.0512 (13) 0.0508 (13) 0.0027 (12) 0.0079 (11) 0.0064 (11)
C4 0.0432 (11) 0.0373 (10) 0.0371 (10) −0.0031 (9) −0.0003 (9) 0.0023 (9)
C5 0.0466 (12) 0.0394 (11) 0.0464 (11) −0.0039 (10) −0.0068 (10) 0.0027 (9)
C6 0.0509 (13) 0.0396 (11) 0.0452 (12) −0.0006 (11) −0.0026 (10) −0.0048 (10)
C7 0.0449 (11) 0.0428 (11) 0.0377 (10) 0.0001 (11) −0.0014 (9) −0.0024 (9)
C8 0.0424 (12) 0.0563 (14) 0.0540 (13) 0.0024 (12) −0.0023 (11) 0.0022 (11)
C9 0.0394 (12) 0.0631 (15) 0.0419 (11) −0.0043 (11) −0.0057 (10) 0.0048 (11)
C10 0.0426 (13) 0.0831 (19) 0.0546 (14) −0.0019 (14) −0.0012 (12) 0.0051 (14)
C11 0.0568 (16) 0.091 (2) 0.0629 (16) −0.0254 (17) 0.0044 (14) 0.0133 (16)
C12 0.074 (2) 0.0660 (18) 0.082 (2) −0.0271 (18) 0.0046 (17) 0.0048 (16)
C13 0.0657 (18) 0.0564 (15) 0.0716 (17) −0.0199 (15) 0.0026 (15) −0.0070 (13)
C14 0.0469 (13) 0.0582 (14) 0.0463 (12) −0.0132 (12) −0.0050 (10) −0.0018 (11)
C15 0.0487 (13) 0.0488 (12) 0.0464 (12) −0.0099 (11) 0.0007 (11) −0.0088 (10)
C16 0.0530 (14) 0.0380 (11) 0.0498 (12) −0.0001 (11) −0.0011 (11) −0.0026 (10)
C17 0.0734 (18) 0.0538 (14) 0.0531 (14) 0.0148 (14) −0.0002 (13) −0.0067 (12)
C18 0.0713 (18) 0.0537 (15) 0.0723 (17) 0.0186 (14) −0.0074 (15) −0.0066 (14)
C19 0.0673 (17) 0.0438 (13) 0.0665 (15) 0.0025 (13) −0.0126 (14) 0.0081 (12)
C20 0.0722 (17) 0.0584 (15) 0.0488 (13) 0.0083 (15) −0.0034 (13) 0.0048 (11)
C21 0.0643 (16) 0.0488 (13) 0.0520 (13) 0.0105 (13) 0.0008 (12) 0.0006 (11)
C22 0.0410 (12) 0.0519 (13) 0.0524 (13) −0.0002 (11) 0.0046 (10) 0.0104 (11)
C23 0.0612 (16) 0.0583 (16) 0.0689 (16) −0.0106 (14) −0.0019 (14) 0.0140 (13)
C24 0.093 (2) 0.0612 (18) 0.093 (2) −0.0071 (18) 0.005 (2) 0.0275 (17)
C25 0.085 (2) 0.089 (2) 0.0730 (19) 0.013 (2) 0.0069 (18) 0.0370 (18)
C26 0.0676 (18) 0.102 (2) 0.0499 (14) 0.0056 (18) −0.0012 (13) 0.0150 (16)
C27 0.0539 (15) 0.0645 (15) 0.0506 (13) −0.0039 (13) 0.0025 (12) 0.0048 (12)
C28 0.0497 (13) 0.0423 (12) 0.0493 (12) −0.0023 (11) 0.0018 (11) 0.0062 (10)
C29 0.0641 (16) 0.0421 (12) 0.0584 (14) 0.0028 (12) 0.0105 (13) 0.0037 (11)
C30 0.0681 (17) 0.0518 (14) 0.0537 (14) −0.0077 (14) 0.0097 (13) 0.0072 (11)
C31 0.0806 (19) 0.0440 (13) 0.0504 (13) −0.0154 (14) −0.0013 (14) 0.0043 (11)
C32 0.110 (3) 0.0406 (13) 0.0590 (15) −0.0050 (16) 0.0063 (17) −0.0015 (12)
C33 0.085 (2) 0.0484 (14) 0.0507 (13) −0.0015 (14) 0.0103 (14) 0.0000 (11)
C34 0.168 (4) 0.074 (2) 0.0659 (19) −0.049 (3) 0.029 (2) 0.0030 (17)
C35 0.0561 (14) 0.0558 (14) 0.0406 (11) −0.0051 (13) 0.0009 (11) −0.0045 (11)
C36A 0.185 (11) 0.086 (5) 0.027 (3) −0.057 (6) −0.007 (5) 0.006 (3)
C36B 0.052 (6) 0.17 (2) 0.066 (9) 0.037 (11) −0.012 (5) 0.039 (9)
C37A 0.100 (6) 0.179 (13) 0.062 (4) −0.039 (7) 0.002 (4) 0.032 (6)
C37B 0.26 (3) 0.073 (9) 0.056 (6) 0.017 (12) 0.060 (12) 0.022 (6)
C38 0.108 (3) 0.091 (2) 0.082 (2) 0.013 (2) −0.021 (2) 0.0345 (18)
N1 0.0521 (11) 0.0395 (10) 0.0512 (10) 0.0007 (9) 0.0073 (9) 0.0045 (8)
N2 0.0409 (10) 0.0394 (9) 0.0404 (9) −0.0045 (8) 0.0009 (8) −0.0033 (8)
N3 0.0540 (13) 0.0427 (10) 0.0625 (13) −0.0060 (10) −0.0127 (11) −0.0022 (10)
O1 0.0886 (15) 0.0584 (11) 0.0719 (12) 0.0103 (11) 0.0320 (12) 0.0013 (10)
O2 0.1283 (19) 0.0457 (10) 0.0576 (10) −0.0274 (12) 0.0074 (12) 0.0055 (8)
O3 0.0868 (13) 0.0590 (10) 0.0386 (8) −0.0079 (10) −0.0050 (9) 0.0070 (8)
O4 0.1063 (18) 0.0765 (13) 0.0502 (10) 0.0096 (13) 0.0095 (11) −0.0168 (10)
O5 0.0965 (16) 0.0656 (12) 0.0824 (14) 0.0216 (13) −0.0214 (13) 0.0100 (11)
O6 0.0764 (13) 0.0744 (13) 0.0590 (11) −0.0144 (11) −0.0207 (10) 0.0107 (10)
O7 0.0528 (12) 0.0899 (15) 0.0921 (14) −0.0189 (12) −0.0117 (11) −0.0037 (12)

Geometric parameters (Å, °)

C1—N1 1.482 (3) C22—C23 1.377 (4)
C1—C4 1.517 (3) C22—C27 1.380 (4)
C1—C2 1.577 (3) C23—C24 1.386 (4)
C1—H1 0.9800 C23—H23 0.9300
C2—C22 1.504 (3) C24—C25 1.369 (5)
C2—C3 1.524 (4) C24—H24 0.9300
C2—H2 0.9800 C25—C26 1.362 (5)
C3—O1 1.197 (3) C25—H25 0.9300
C3—N1 1.378 (3) C26—C27 1.384 (4)
C4—N2 1.464 (3) C26—H26 0.9300
C4—C5 1.542 (3) C27—H27 0.9300
C4—H4 0.9800 C28—C29 1.376 (4)
C5—N3 1.511 (3) C28—C33 1.395 (3)
C5—C6 1.524 (3) C28—N1 1.406 (3)
C5—H5 0.9800 C29—C30 1.384 (3)
C6—C16 1.514 (3) C29—H29 0.9300
C6—C7 1.561 (3) C30—C31 1.366 (4)
C6—H6 0.9800 C30—H30 0.9300
C7—N2 1.474 (3) C31—O2 1.369 (3)
C7—C35 1.538 (3) C31—C32 1.388 (4)
C7—C8 1.545 (3) C32—C33 1.367 (4)
C8—C9 1.496 (4) C32—H32 0.9300
C8—H8A 0.9700 C33—H33 0.9300
C8—H8B 0.9700 C34—O2 1.424 (4)
C9—C10 1.385 (4) C34—H34A 0.9600
C9—C14 1.388 (4) C34—H34B 0.9600
C10—C11 1.377 (4) C34—H34C 0.9600
C10—H10 0.9300 C35—O4 1.198 (3)
C11—C12 1.370 (5) C35—O3 1.322 (3)
C11—H11 0.9300 C36A—C37A 1.240 (17)
C12—C13 1.380 (4) C36A—O3 1.448 (8)
C12—H12 0.9300 C36A—H36A 0.9700
C13—C14 1.380 (4) C36A—H36B 0.9700
C13—H13 0.9300 C36B—O3 1.49 (2)
C14—C15 1.497 (3) C36B—C37B 1.60 (3)
C15—N2 1.474 (3) C36B—H36C 0.9700
C15—H15A 0.9700 C36B—H36D 0.9700
C15—H15B 0.9700 C37A—H37A 0.9600
C16—C21 1.384 (3) C37A—H37B 0.9600
C16—C17 1.390 (3) C37A—H37C 0.9600
C17—C18 1.366 (4) C37B—H37D 0.9600
C17—H17 0.9300 C37B—H37E 0.9600
C18—C19 1.387 (4) C37B—H37F 0.9600
C18—H18 0.9300 C38—O5 1.408 (4)
C19—C20 1.368 (4) C38—H38A 0.9600
C19—O5 1.379 (3) C38—H38B 0.9600
C20—C21 1.385 (4) C38—H38C 0.9600
C20—H20 0.9300 N3—O6 1.211 (3)
C21—H21 0.9300 N3—O7 1.217 (3)
N1—C1—C4 117.82 (19) C23—C22—C2 119.9 (2)
N1—C1—C2 87.16 (17) C27—C22—C2 121.4 (2)
C4—C1—C2 115.87 (17) C22—C23—C24 120.1 (3)
N1—C1—H1 111.3 C22—C23—H23 120.0
C4—C1—H1 111.3 C24—C23—H23 120.0
C2—C1—H1 111.3 C25—C24—C23 120.8 (3)
C22—C2—C3 118.6 (2) C25—C24—H24 119.6
C22—C2—C1 119.5 (2) C23—C24—H24 119.6
C3—C2—C1 85.25 (17) C26—C25—C24 119.3 (3)
C22—C2—H2 110.4 C26—C25—H25 120.4
C3—C2—H2 110.4 C24—C25—H25 120.4
C1—C2—H2 110.4 C25—C26—C27 120.4 (3)
O1—C3—N1 131.5 (2) C25—C26—H26 119.8
O1—C3—C2 135.4 (2) C27—C26—H26 119.8
N1—C3—C2 93.13 (19) C22—C27—C26 120.7 (3)
N2—C4—C1 114.74 (16) C22—C27—H27 119.7
N2—C4—C5 105.44 (17) C26—C27—H27 119.7
C1—C4—C5 113.11 (18) C29—C28—C33 119.2 (2)
N2—C4—H4 107.7 C29—C28—N1 121.0 (2)
C1—C4—H4 107.7 C33—C28—N1 119.8 (2)
C5—C4—H4 107.7 C28—C29—C30 120.7 (2)
N3—C5—C6 111.29 (19) C28—C29—H29 119.6
N3—C5—C4 109.85 (18) C30—C29—H29 119.6
C6—C5—C4 105.74 (18) C31—C30—C29 120.1 (2)
N3—C5—H5 110.0 C31—C30—H30 120.0
C6—C5—H5 110.0 C29—C30—H30 120.0
C4—C5—H5 110.0 C30—C31—O2 125.0 (2)
C16—C6—C5 112.48 (19) C30—C31—C32 119.4 (2)
C16—C6—C7 115.8 (2) O2—C31—C32 115.6 (2)
C5—C6—C7 103.80 (18) C33—C32—C31 121.1 (3)
C16—C6—H6 108.1 C33—C32—H32 119.5
C5—C6—H6 108.1 C31—C32—H32 119.5
C7—C6—H6 108.1 C32—C33—C28 119.5 (2)
N2—C7—C35 111.71 (19) C32—C33—H33 120.2
N2—C7—C8 111.33 (19) C28—C33—H33 120.2
C35—C7—C8 103.68 (19) O2—C34—H34A 109.5
N2—C7—C6 106.29 (17) O2—C34—H34B 109.5
C35—C7—C6 109.46 (19) H34A—C34—H34B 109.5
C8—C7—C6 114.5 (2) O2—C34—H34C 109.5
C9—C8—C7 109.2 (2) H34A—C34—H34C 109.5
C9—C8—H8A 109.8 H34B—C34—H34C 109.5
C7—C8—H8A 109.8 O4—C35—O3 124.4 (2)
C9—C8—H8B 109.8 O4—C35—C7 121.9 (2)
C7—C8—H8B 109.8 O3—C35—C7 113.5 (2)
H8A—C8—H8B 108.3 C37A—C36A—O3 122.8 (11)
C10—C9—C14 119.5 (3) C37A—C36A—H36A 106.6
C10—C9—C8 125.2 (3) O3—C36A—H36A 106.6
C14—C9—C8 115.2 (2) C37A—C36A—H36B 106.6
C11—C10—C9 119.8 (3) O3—C36A—H36B 106.6
C11—C10—H10 120.1 H36A—C36A—H36B 106.6
C9—C10—H10 120.1 O3—C36B—C37B 100.1 (15)
C12—C11—C10 120.6 (3) O3—C36B—H36C 111.7
C12—C11—H11 119.7 C37B—C36B—H36C 111.7
C10—C11—H11 119.7 O3—C36B—H36D 111.7
C11—C12—C13 120.2 (3) C37B—C36B—H36D 111.7
C11—C12—H12 119.9 H36C—C36B—H36D 109.5
C13—C12—H12 119.9 C36A—C37A—H37A 109.5
C14—C13—C12 119.7 (3) C36A—C37A—H37B 109.5
C14—C13—H13 120.2 H37A—C37A—H37B 109.5
C12—C13—H13 120.2 C36A—C37A—H37C 109.5
C13—C14—C9 120.2 (3) H37A—C37A—H37C 109.5
C13—C14—C15 123.9 (3) H37B—C37A—H37C 109.5
C9—C14—C15 115.8 (2) C36B—C37B—H37D 109.5
N2—C15—C14 109.52 (18) C36B—C37B—H37E 109.5
N2—C15—H15A 109.8 H37D—C37B—H37E 109.5
C14—C15—H15A 109.8 C36B—C37B—H37F 109.5
N2—C15—H15B 109.8 H37D—C37B—H37F 109.5
C14—C15—H15B 109.8 H37E—C37B—H37F 109.5
H15A—C15—H15B 108.2 O5—C38—H38A 109.5
C21—C16—C17 116.7 (2) O5—C38—H38B 109.5
C21—C16—C6 124.1 (2) H38A—C38—H38B 109.5
C17—C16—C6 119.2 (2) O5—C38—H38C 109.5
C18—C17—C16 122.1 (2) H38A—C38—H38C 109.5
C18—C17—H17 118.9 H38B—C38—H38C 109.5
C16—C17—H17 118.9 C3—N1—C28 130.0 (2)
C17—C18—C19 120.0 (3) C3—N1—C1 94.42 (18)
C17—C18—H18 120.0 C28—N1—C1 129.14 (19)
C19—C18—H18 120.0 C4—N2—C7 111.06 (17)
C20—C19—O5 124.8 (3) C4—N2—C15 111.80 (16)
C20—C19—C18 119.3 (2) C7—N2—C15 115.71 (18)
O5—C19—C18 115.9 (3) O6—N3—O7 124.1 (2)
C19—C20—C21 120.0 (2) O6—N3—C5 118.8 (2)
C19—C20—H20 120.0 O7—N3—C5 117.1 (2)
C21—C20—H20 120.0 C31—O2—C34 116.7 (2)
C16—C21—C20 121.9 (3) C35—O3—C36A 113.4 (5)
C16—C21—H21 119.1 C35—O3—C36B 119.7 (10)
C20—C21—H21 119.1 C36A—O3—C36B 17.5 (10)
C23—C22—C27 118.6 (2) C19—O5—C38 117.4 (3)
N1—C1—C2—C22 119.1 (2) C2—C22—C23—C24 −175.0 (3)
C4—C1—C2—C22 −0.6 (3) C22—C23—C24—C25 −0.3 (5)
N1—C1—C2—C3 −1.17 (17) C23—C24—C25—C26 −1.6 (5)
C4—C1—C2—C3 −120.9 (2) C24—C25—C26—C27 1.6 (5)
C22—C2—C3—O1 61.1 (4) C23—C22—C27—C26 −2.3 (4)
C1—C2—C3—O1 −177.8 (3) C2—C22—C27—C26 174.9 (3)
C22—C2—C3—N1 −119.9 (2) C25—C26—C27—C22 0.4 (5)
C1—C2—C3—N1 1.26 (18) C33—C28—C29—C30 −0.6 (4)
N1—C1—C4—N2 58.1 (3) N1—C28—C29—C30 −178.7 (3)
C2—C1—C4—N2 159.31 (18) C28—C29—C30—C31 −0.9 (5)
N1—C1—C4—C5 179.16 (17) C29—C30—C31—O2 −179.4 (3)
C2—C1—C4—C5 −79.7 (2) C29—C30—C31—C32 2.2 (5)
N2—C4—C5—N3 94.8 (2) C30—C31—C32—C33 −1.9 (5)
C1—C4—C5—N3 −31.3 (3) O2—C31—C32—C33 179.5 (3)
N2—C4—C5—C6 −25.4 (2) C31—C32—C33—C28 0.4 (5)
C1—C4—C5—C6 −151.54 (18) C29—C28—C33—C32 0.9 (5)
N3—C5—C6—C16 142.32 (19) N1—C28—C33—C32 179.0 (3)
C4—C5—C6—C16 −98.4 (2) N2—C7—C35—O4 164.9 (2)
N3—C5—C6—C7 −91.7 (2) C8—C7—C35—O4 −75.2 (3)
C4—C5—C6—C7 27.5 (2) C6—C7—C35—O4 47.4 (3)
C16—C6—C7—N2 103.9 (2) N2—C7—C35—O3 −20.1 (3)
C5—C6—C7—N2 −19.9 (2) C8—C7—C35—O3 99.9 (3)
C16—C6—C7—C35 −135.3 (2) C6—C7—C35—O3 −137.6 (2)
C5—C6—C7—C35 100.9 (2) O1—C3—N1—C28 24.7 (5)
C16—C6—C7—C8 −19.4 (3) C2—C3—N1—C28 −154.4 (2)
C5—C6—C7—C8 −143.24 (19) O1—C3—N1—C1 177.8 (3)
N2—C7—C8—C9 49.1 (2) C2—C3—N1—C1 −1.34 (19)
C35—C7—C8—C9 −71.1 (2) C29—C28—N1—C3 159.1 (3)
C6—C7—C8—C9 169.71 (18) C33—C28—N1—C3 −19.0 (4)
C7—C8—C9—C10 125.3 (2) C29—C28—N1—C1 14.7 (4)
C7—C8—C9—C14 −51.4 (3) C33—C28—N1—C1 −163.4 (3)
C14—C9—C10—C11 −1.5 (4) C4—C1—N1—C3 119.2 (2)
C8—C9—C10—C11 −178.1 (3) C2—C1—N1—C3 1.30 (19)
C9—C10—C11—C12 0.6 (4) C4—C1—N1—C28 −87.3 (3)
C10—C11—C12—C13 0.3 (5) C2—C1—N1—C28 154.8 (2)
C11—C12—C13—C14 −0.3 (5) C1—C4—N2—C7 138.00 (18)
C12—C13—C14—C9 −0.5 (4) C5—C4—N2—C7 12.9 (2)
C12—C13—C14—C15 175.9 (2) C1—C4—N2—C15 −91.1 (2)
C10—C9—C14—C13 1.4 (4) C5—C4—N2—C15 143.76 (19)
C8—C9—C14—C13 178.3 (2) C35—C7—N2—C4 −114.9 (2)
C10—C9—C14—C15 −175.3 (2) C8—C7—N2—C4 129.7 (2)
C8—C9—C14—C15 1.7 (3) C6—C7—N2—C4 4.4 (2)
C13—C14—C15—N2 −127.0 (3) C35—C7—N2—C15 116.2 (2)
C9—C14—C15—N2 49.5 (3) C8—C7—N2—C15 0.8 (3)
C5—C6—C16—C21 29.0 (3) C6—C7—N2—C15 −124.4 (2)
C7—C6—C16—C21 −90.2 (3) C14—C15—N2—C4 −178.13 (19)
C5—C6—C16—C17 −150.5 (2) C14—C15—N2—C7 −49.7 (3)
C7—C6—C16—C17 90.3 (3) C6—C5—N3—O6 40.4 (3)
C21—C16—C17—C18 0.3 (4) C4—C5—N3—O6 −76.4 (3)
C6—C16—C17—C18 179.9 (3) C6—C5—N3—O7 −142.3 (2)
C16—C17—C18—C19 −1.4 (5) C4—C5—N3—O7 101.0 (2)
C17—C18—C19—C20 1.2 (5) C30—C31—O2—C34 2.4 (5)
C17—C18—C19—O5 −178.5 (3) C32—C31—O2—C34 −179.1 (3)
O5—C19—C20—C21 179.7 (3) O4—C35—O3—C36A 8.5 (8)
C18—C19—C20—C21 0.0 (4) C7—C35—O3—C36A −166.4 (7)
C17—C16—C21—C20 1.0 (4) O4—C35—O3—C36B −9.9 (10)
C6—C16—C21—C20 −178.6 (3) C7—C35—O3—C36B 175.3 (9)
C19—C20—C21—C16 −1.1 (5) C37A—C36A—O3—C35 106.6 (10)
C3—C2—C22—C23 −156.6 (3) C37A—C36A—O3—C36B −139 (5)
C1—C2—C22—C23 101.9 (3) C37B—C36B—O3—C35 132.2 (15)
C3—C2—C22—C27 26.2 (3) C37B—C36B—O3—C36A 59 (4)
C1—C2—C22—C27 −75.3 (3) C20—C19—O5—C38 −1.1 (5)
C27—C22—C23—C24 2.3 (4) C18—C19—O5—C38 178.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2i 0.98 2.42 3.260 (3) 143
C20—H20···O1ii 0.93 2.47 3.397 (3) 172
C29—H29···O3 0.93 2.59 3.442 (3) 152
C29—H29···N2 0.93 2.50 3.168 (3) 128
C33—H33···O1 0.93 2.44 3.054 (4) 123

Symmetry codes: (i) x, y+1, z; (ii) x−1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2696).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem.11, 407–409. [DOI] [PubMed]
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Borthwick, A. D., Davies, D. E., Erti, P. F., Exall, A. M., Haley, T. M., Hart, G. J., Jackson, D. L., Parry, N. R., Patikis, A., Trivedi, N., Welingerten, C. G. & Woolven, J. M. (2003). J. Med. Chem 46, 4428–4449. [DOI] [PubMed]
  5. Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev.62, 547–585. [DOI] [PMC free article] [PubMed]
  6. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Fernandes, E., Costa, D., Tosta, S. A., Lima, J. L. & Reis, S. (2004). Free Radic. Biol. Med.37, 1895–1905. [DOI] [PubMed]
  10. Georg, G. I. & Ravikumar, V. T. (1993). The Organic Chemistry of Beta-Lactams, pp. 295–368. New York: VCH.
  11. Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717. [DOI] [PMC free article] [PubMed]
  12. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry, Vol. II, ch. 1.18–1.20. New York: Peragmon.
  13. LaVoie, E. J., Adams, E. A., Shigematsu, A. & Hoffman, D. (1983). Carcinogenesis, 4, P1169–P1173.
  14. Morin, R. B. & Gorman, M. (1982). Chemistry and Biology of Beta-Lactam Antibiotics, pp. 1–3. New York: Academic Press.
  15. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  18. Sundari, B., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci.22, x57–x58.
  19. Verkman, A. S. (1990). Am. J. Physiol. Cell Physiol.259, C375–C388. [DOI] [PubMed]
  20. Weissman, D., Poli, G., Bousseau, A. & Fauci, A. S. (1993). Proc. Natl Acad. Sci. USA, 90, 2537–2541. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010428/bt2696sup1.cif

e-64-0o887-sup1.cif (32.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010428/bt2696Isup2.hkl

e-64-0o887-Isup2.hkl (190.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES