Abstract
In the title compound, [Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO, the CuII atom is coordinated in a slightly distorted square-planar geometry by an O, an S and an N atom from the tridentate ligand 3,5-dichlorosalicylaldehyde thiosemicarbazonate ligand and one O atom from dimethylformamide. At the same time, the Cu atom is in contact with S and Cl atoms from another two complexes [Cu⋯S and Cu⋯Cl = 2.9791 (2) and 3.3800 (3) Å, respectively], thereby forming a [4 + 2] coordination geometry. The crystal structure exhibits N—H⋯O and N—H⋯N hydrogen bonds.
Related literature
For studies of thiosemicarbazone complexes containing amino acids, see: Garcia-Orozco et al. (2002 ▶); Seena et al. (2007 ▶); Valdes-Martinez et al. (1995 ▶); Singh et al. (1997 ▶); Shen et al. (1997 ▶); Zimmer et al. (1991 ▶).
Experimental
Crystal data
[Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO
M r = 471.84
Monoclinic,
a = 9.4979 (10) Å
b = 9.8057 (12) Å
c = 21.744 (2) Å
β = 94.263 (2)°
V = 2019.5 (4) Å3
Z = 4
Mo Kα radiation
μ = 1.47 mm−1
T = 298 (2) K
0.49 × 0.47 × 0.24 mm
Data collection
Bruker SMART 1000 diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.532, T max = 0.719
9869 measured reflections
3558 independent reflections
2587 reflections with I > 2σ(I)
R int = 0.034
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.098
S = 1.06
3558 reflections
235 parameters
H-atom parameters constrained
Δρmax = 0.31 e Å−3
Δρmin = −0.50 e Å−3
Data collection: SMART (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008982/om2219sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008982/om2219Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Cu1—O1 | 1.909 (2) |
| Cu1—N1 | 1.954 (3) |
| Cu1—O2 | 1.985 (2) |
| Cu1—S1 | 2.2567 (10) |
| O1—Cu1—N1 | 93.55 (11) |
| O1—Cu1—O2 | 90.55 (11) |
| N1—Cu1—O2 | 172.04 (11) |
| O1—Cu1—S1 | 176.26 (8) |
| N1—Cu1—S1 | 86.04 (8) |
| O2—Cu1—S1 | 89.43 (8) |
| C4—O1—Cu1 | 127.5 (2) |
| C9—O2—Cu1 | 123.8 (3) |
| C1—S1—Cu1 | 94.29 (11) |
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H3A⋯N2i | 0.86 | 2.14 | 2.992 (4) | 170 |
| N3—H3B⋯O3ii | 0.86 | 2.08 | 2.886 (4) | 157 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, China.
supplementary crystallographic information
Comment
As a special kind of Schiff base, thiosemicarbazones and their metal complexes have become the subjects of intensive study because of their wide ranging biological activities, analytical applications and interesting chemical and structural properties (Zimmer, et al., 1991). In addition, salicylaldehyde thiosemicarbazone and its substituent analogs as well as their copper complexes has been synthesized. The N—S donor also have theoretical interest, as they are capable of furnishing an environment of controlled geometry and ligand field strength.
In the title compound there is a DMF molecule coordinated through O, in addition to one N, one O and one S atom from the tridentate ligand 3,5-dichlorosalicylaldehyde thiosemicarbazone forming a slightly distorted planar square geometry (Fig. 1). In the unit cell, above and below the distorted square plane are Cl and S atoms at a long distance forming a "4 + 2" geometry. The weak interaction length of S–Cu is 2.9791 (2) Å. This bond distance are in the range of upper values for a long coordination distance (2.5–3.0 Å) in Cu(II) compounds. The length of Cl–Cu is 3.3800 (3) Å (Fig. 2). All of these facts can be seen as the result of the Jahn-Teller effect (Garcia-Orozco et al., 2002). A three-dimensional network is formed through these Cl–Cu, S–Cu contacts, N–H···N and N–H···O hydrogen bonds (Fig.3).
Experimental
An EtOH solution (15 ml) of 3,5-dichlorosalicylaldehyde (5 mmol) was added dropwise to the solution (15 ml) of thiosemicarbazide (5 mmol) and 0.75 ml acetic anhydride with stirring at ca 70°C for 4.5 h. The light brown precipitate was removed by filtration and recrystallized from 1:1 (v/v) MeOH/EtOH solution. Then a mixture of the ligand (0.5 mmol) and copper nitrate (0.5 mmol) in EtOH (35 ml) was stirred at ca 65° C for 2 h to give the desired complex. The Cu complex was dissolved in DMF, and ether slowly diffused into the DMF solution to afford almost quantitatively green crystals of the mononuclear complex at ambient temperature after several days.
Figures
Fig. 1.
The asymmetric unit showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted for clarity.
Fig. 2.
The interactions of Cl···Cu and S···Cu in the asymmetric unit one-dimensional chains.
Fig. 3.
A view down the b axis, broken line showing short Cl–Cu and S···Cu contacts and hydrogen bonds.
Crystal data
| [Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO | F000 = 964 |
| Mr = 471.84 | Dx = 1.552 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation λ = 0.71073 Å |
| a = 9.4979 (10) Å | Cell parameters from 3442 reflections |
| b = 9.8057 (12) Å | θ = 2.3–26.8º |
| c = 21.744 (2) Å | µ = 1.47 mm−1 |
| β = 94.263 (2)º | T = 298 (2) K |
| V = 2019.5 (4) Å3 | Block, green |
| Z = 4 | 0.49 × 0.47 × 0.24 mm |
Data collection
| Bruker SMART 1000 diffractometer | 3558 independent reflections |
| Radiation source: fine-focus sealed tube | 2587 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.034 |
| T = 298(2) K | θmax = 25.0º |
| φ and ω scans | θmin = 1.9º |
| Absorption correction: multi-scan(SADABS; Sheldrick, 1996) | h = −11→10 |
| Tmin = 0.532, Tmax = 0.719 | k = −9→11 |
| 9869 measured reflections | l = −23→25 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
| wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0377P)2 + 1.6178P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max = 0.001 |
| 3558 reflections | Δρmax = 0.31 e Å−3 |
| 235 parameters | Δρmin = −0.50 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.54152 (4) | 0.31930 (4) | 0.51062 (2) | 0.04237 (15) | |
| Cl1 | 0.29920 (11) | −0.05605 (11) | 0.41172 (6) | 0.0706 (3) | |
| Cl2 | 0.69572 (16) | −0.09500 (13) | 0.24825 (6) | 0.0928 (4) | |
| N1 | 0.7172 (3) | 0.3290 (3) | 0.46944 (12) | 0.0353 (6) | |
| N2 | 0.8232 (3) | 0.4197 (3) | 0.48940 (14) | 0.0433 (7) | |
| N3 | 0.8875 (3) | 0.5886 (3) | 0.55631 (15) | 0.0592 (9) | |
| H3A | 0.9666 | 0.5938 | 0.5396 | 0.071* | |
| H3B | 0.8710 | 0.6418 | 0.5864 | 0.071* | |
| N4 | 0.1645 (3) | 0.2314 (4) | 0.58339 (19) | 0.0736 (11) | |
| N5 | 0.3114 (4) | 0.6470 (4) | 0.24057 (17) | 0.0673 (10) | |
| O1 | 0.4724 (2) | 0.1664 (2) | 0.46316 (13) | 0.0515 (6) | |
| O2 | 0.3799 (2) | 0.3059 (3) | 0.56320 (12) | 0.0536 (7) | |
| O3 | 0.4168 (4) | 0.7162 (4) | 0.15577 (16) | 0.0890 (10) | |
| S1 | 0.63125 (9) | 0.49051 (9) | 0.57083 (4) | 0.0431 (2) | |
| C1 | 0.7899 (3) | 0.4974 (3) | 0.53551 (15) | 0.0386 (8) | |
| C2 | 0.7456 (3) | 0.2575 (3) | 0.42245 (17) | 0.0427 (8) | |
| H2 | 0.8309 | 0.2751 | 0.4055 | 0.051* | |
| C3 | 0.6572 (3) | 0.1521 (3) | 0.39345 (17) | 0.0430 (8) | |
| C4 | 0.5275 (4) | 0.1113 (3) | 0.41651 (18) | 0.0440 (9) | |
| C5 | 0.4564 (4) | 0.0012 (3) | 0.38446 (19) | 0.0496 (10) | |
| C6 | 0.5066 (5) | −0.0603 (4) | 0.3345 (2) | 0.0604 (11) | |
| H6 | 0.4566 | −0.1317 | 0.3150 | 0.072* | |
| C7 | 0.6330 (5) | −0.0162 (4) | 0.31267 (18) | 0.0579 (10) | |
| C8 | 0.7069 (4) | 0.0878 (4) | 0.34189 (18) | 0.0517 (10) | |
| H8 | 0.7916 | 0.1163 | 0.3272 | 0.062* | |
| C9 | 0.2784 (4) | 0.2276 (4) | 0.55256 (19) | 0.0568 (10) | |
| H9 | 0.2831 | 0.1632 | 0.5214 | 0.068* | |
| C10 | 0.1465 (5) | 0.3332 (6) | 0.6303 (3) | 0.1007 (19) | |
| H10A | 0.2270 | 0.3927 | 0.6334 | 0.151* | |
| H10B | 0.1377 | 0.2890 | 0.6692 | 0.151* | |
| H10C | 0.0629 | 0.3854 | 0.6195 | 0.151* | |
| C11 | 0.0480 (5) | 0.1379 (6) | 0.5678 (3) | 0.118 (2) | |
| H11A | −0.0330 | 0.1885 | 0.5517 | 0.178* | |
| H11B | 0.0252 | 0.0896 | 0.6042 | 0.178* | |
| H11C | 0.0750 | 0.0740 | 0.5374 | 0.178* | |
| C12 | 0.3156 (6) | 0.7130 (5) | 0.1874 (2) | 0.0765 (14) | |
| H12 | 0.2351 | 0.7607 | 0.1731 | 0.092* | |
| C13 | 0.4330 (6) | 0.5683 (5) | 0.2633 (3) | 0.1003 (18) | |
| H13A | 0.4152 | 0.4732 | 0.2556 | 0.151* | |
| H13B | 0.4508 | 0.5831 | 0.3068 | 0.151* | |
| H13C | 0.5139 | 0.5963 | 0.2425 | 0.151* | |
| C14 | 0.1882 (5) | 0.6465 (6) | 0.2757 (2) | 0.0926 (16) | |
| H14A | 0.1149 | 0.7001 | 0.2547 | 0.139* | |
| H14B | 0.2121 | 0.6847 | 0.3158 | 0.139* | |
| H14C | 0.1557 | 0.5546 | 0.2800 | 0.139* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0313 (2) | 0.0425 (3) | 0.0537 (3) | −0.00725 (18) | 0.00661 (18) | 0.0006 (2) |
| Cl1 | 0.0498 (6) | 0.0584 (6) | 0.1019 (9) | −0.0229 (5) | −0.0066 (6) | 0.0054 (6) |
| Cl2 | 0.1295 (12) | 0.0781 (8) | 0.0717 (8) | −0.0265 (8) | 0.0131 (8) | −0.0339 (7) |
| N1 | 0.0274 (14) | 0.0357 (15) | 0.0427 (16) | −0.0085 (11) | 0.0012 (12) | −0.0040 (13) |
| N2 | 0.0286 (14) | 0.0462 (17) | 0.0556 (19) | −0.0114 (12) | 0.0064 (13) | −0.0158 (15) |
| N3 | 0.0365 (17) | 0.072 (2) | 0.071 (2) | −0.0200 (16) | 0.0127 (15) | −0.0359 (18) |
| N4 | 0.039 (2) | 0.089 (3) | 0.094 (3) | −0.0100 (18) | 0.0143 (19) | 0.029 (2) |
| N5 | 0.077 (3) | 0.068 (2) | 0.057 (2) | −0.009 (2) | 0.0072 (19) | 0.0059 (19) |
| O1 | 0.0362 (13) | 0.0408 (14) | 0.0782 (19) | −0.0120 (11) | 0.0087 (12) | −0.0043 (13) |
| O2 | 0.0386 (14) | 0.0559 (16) | 0.0681 (18) | −0.0111 (12) | 0.0152 (12) | 0.0063 (13) |
| O3 | 0.098 (3) | 0.101 (3) | 0.067 (2) | −0.024 (2) | −0.0003 (19) | 0.0309 (19) |
| S1 | 0.0349 (5) | 0.0519 (5) | 0.0431 (5) | −0.0045 (4) | 0.0068 (4) | −0.0034 (4) |
| C1 | 0.0312 (17) | 0.044 (2) | 0.0401 (19) | −0.0040 (15) | −0.0008 (15) | −0.0022 (16) |
| C2 | 0.0309 (18) | 0.044 (2) | 0.054 (2) | −0.0099 (15) | 0.0033 (16) | −0.0054 (18) |
| C3 | 0.0384 (19) | 0.0362 (19) | 0.054 (2) | −0.0046 (15) | −0.0019 (16) | −0.0013 (17) |
| C4 | 0.0380 (19) | 0.0337 (19) | 0.059 (2) | −0.0007 (15) | −0.0046 (17) | 0.0041 (17) |
| C5 | 0.044 (2) | 0.037 (2) | 0.066 (3) | −0.0097 (16) | −0.0119 (19) | 0.0091 (19) |
| C6 | 0.070 (3) | 0.039 (2) | 0.068 (3) | −0.011 (2) | −0.021 (2) | −0.004 (2) |
| C7 | 0.074 (3) | 0.047 (2) | 0.051 (2) | −0.008 (2) | −0.007 (2) | −0.0089 (19) |
| C8 | 0.053 (2) | 0.047 (2) | 0.055 (2) | −0.0087 (18) | 0.0024 (19) | −0.0049 (19) |
| C9 | 0.045 (2) | 0.063 (3) | 0.063 (3) | −0.004 (2) | 0.008 (2) | 0.013 (2) |
| C10 | 0.072 (3) | 0.134 (5) | 0.102 (4) | 0.014 (3) | 0.045 (3) | 0.024 (4) |
| C11 | 0.048 (3) | 0.141 (5) | 0.167 (6) | −0.033 (3) | 0.011 (3) | 0.042 (5) |
| C12 | 0.089 (4) | 0.066 (3) | 0.072 (3) | −0.015 (3) | −0.010 (3) | 0.013 (3) |
| C13 | 0.118 (5) | 0.099 (4) | 0.087 (4) | 0.023 (3) | 0.029 (3) | 0.041 (3) |
| C14 | 0.083 (4) | 0.119 (4) | 0.077 (3) | −0.017 (3) | 0.012 (3) | −0.007 (3) |
Geometric parameters (Å, °)
| Cu1—O1 | 1.909 (2) | C2—H2 | 0.9300 |
| Cu1—N1 | 1.954 (3) | C3—C8 | 1.398 (5) |
| Cu1—O2 | 1.985 (2) | C3—C4 | 1.421 (5) |
| Cu1—S1 | 2.2567 (10) | C4—C5 | 1.427 (5) |
| Cl1—C5 | 1.740 (4) | C5—C6 | 1.359 (6) |
| Cl2—C7 | 1.743 (4) | C6—C7 | 1.393 (6) |
| N1—C2 | 1.284 (4) | C6—H6 | 0.9300 |
| N1—N2 | 1.388 (3) | C7—C8 | 1.367 (5) |
| N2—C1 | 1.316 (4) | C8—H8 | 0.9300 |
| N3—C1 | 1.342 (4) | C9—H9 | 0.9300 |
| N3—H3A | 0.8600 | C10—H10A | 0.9600 |
| N3—H3B | 0.8600 | C10—H10B | 0.9600 |
| N4—C9 | 1.315 (5) | C10—H10C | 0.9600 |
| N4—C10 | 1.446 (6) | C11—H11A | 0.9600 |
| N4—C11 | 1.458 (6) | C11—H11B | 0.9600 |
| N5—C12 | 1.328 (6) | C11—H11C | 0.9600 |
| N5—C14 | 1.444 (6) | C12—H12 | 0.9300 |
| N5—C13 | 1.446 (6) | C13—H13A | 0.9600 |
| O1—C4 | 1.294 (4) | C13—H13B | 0.9600 |
| O2—C9 | 1.241 (4) | C13—H13C | 0.9600 |
| O3—C12 | 1.223 (6) | C14—H14A | 0.9600 |
| S1—C1 | 1.743 (3) | C14—H14B | 0.9600 |
| C2—C3 | 1.447 (4) | C14—H14C | 0.9600 |
| O1—Cu1—N1 | 93.55 (11) | C5—C6—H6 | 120.1 |
| O1—Cu1—O2 | 90.55 (11) | C7—C6—H6 | 120.1 |
| N1—Cu1—O2 | 172.04 (11) | C8—C7—C6 | 119.9 (4) |
| O1—Cu1—S1 | 176.26 (8) | C8—C7—Cl2 | 120.7 (3) |
| N1—Cu1—S1 | 86.04 (8) | C6—C7—Cl2 | 119.4 (3) |
| O2—Cu1—S1 | 89.43 (8) | C7—C8—C3 | 121.1 (4) |
| C2—N1—N2 | 114.1 (3) | C7—C8—H8 | 119.4 |
| C2—N1—Cu1 | 125.1 (2) | C3—C8—H8 | 119.4 |
| N2—N1—Cu1 | 120.8 (2) | O2—C9—N4 | 123.0 (4) |
| C1—N2—N1 | 113.5 (3) | O2—C9—H9 | 118.5 |
| C1—N3—H3A | 120.0 | N4—C9—H9 | 118.5 |
| C1—N3—H3B | 120.0 | N4—C10—H10A | 109.5 |
| H3A—N3—H3B | 120.0 | N4—C10—H10B | 109.5 |
| C9—N4—C10 | 121.6 (4) | H10A—C10—H10B | 109.5 |
| C9—N4—C11 | 120.2 (5) | N4—C10—H10C | 109.5 |
| C10—N4—C11 | 118.0 (4) | H10A—C10—H10C | 109.5 |
| C12—N5—C14 | 122.7 (4) | H10B—C10—H10C | 109.5 |
| C12—N5—C13 | 118.8 (4) | N4—C11—H11A | 109.5 |
| C14—N5—C13 | 118.4 (4) | N4—C11—H11B | 109.5 |
| C4—O1—Cu1 | 127.5 (2) | H11A—C11—H11B | 109.5 |
| C9—O2—Cu1 | 123.8 (3) | N4—C11—H11C | 109.5 |
| C1—S1—Cu1 | 94.29 (11) | H11A—C11—H11C | 109.5 |
| N2—C1—N3 | 116.3 (3) | H11B—C11—H11C | 109.5 |
| N2—C1—S1 | 125.3 (2) | O3—C12—N5 | 125.3 (5) |
| N3—C1—S1 | 118.4 (3) | O3—C12—H12 | 117.3 |
| N1—C2—C3 | 126.0 (3) | N5—C12—H12 | 117.3 |
| N1—C2—H2 | 117.0 | N5—C13—H13A | 109.5 |
| C3—C2—H2 | 117.0 | N5—C13—H13B | 109.5 |
| C8—C3—C4 | 120.6 (3) | H13A—C13—H13B | 109.5 |
| C8—C3—C2 | 116.9 (3) | N5—C13—H13C | 109.5 |
| C4—C3—C2 | 122.5 (3) | H13A—C13—H13C | 109.5 |
| O1—C4—C3 | 124.8 (3) | H13B—C13—H13C | 109.5 |
| O1—C4—C5 | 119.6 (3) | N5—C14—H14A | 109.5 |
| C3—C4—C5 | 115.6 (3) | N5—C14—H14B | 109.5 |
| C6—C5—C4 | 123.0 (4) | H14A—C14—H14B | 109.5 |
| C6—C5—Cl1 | 119.3 (3) | N5—C14—H14C | 109.5 |
| C4—C5—Cl1 | 117.7 (3) | H14A—C14—H14C | 109.5 |
| C5—C6—C7 | 119.8 (3) | H14B—C14—H14C | 109.5 |
| O1—Cu1—N1—C2 | 7.1 (3) | N1—C2—C3—C4 | −2.9 (6) |
| O2—Cu1—N1—C2 | 127.9 (7) | Cu1—O1—C4—C3 | 3.3 (5) |
| S1—Cu1—N1—C2 | −176.6 (3) | Cu1—O1—C4—C5 | −176.6 (2) |
| O1—Cu1—N1—N2 | −174.1 (2) | C8—C3—C4—O1 | −178.8 (3) |
| O2—Cu1—N1—N2 | −53.3 (9) | C2—C3—C4—O1 | 3.1 (5) |
| S1—Cu1—N1—N2 | 2.2 (2) | C8—C3—C4—C5 | 1.2 (5) |
| C2—N1—N2—C1 | 176.6 (3) | C2—C3—C4—C5 | −176.9 (3) |
| Cu1—N1—N2—C1 | −2.3 (4) | O1—C4—C5—C6 | 179.0 (3) |
| N1—Cu1—O1—C4 | −7.1 (3) | C3—C4—C5—C6 | −1.0 (5) |
| O2—Cu1—O1—C4 | 179.7 (3) | O1—C4—C5—Cl1 | −1.6 (4) |
| S1—Cu1—O1—C4 | −90.6 (13) | C3—C4—C5—Cl1 | 178.5 (3) |
| O1—Cu1—O2—C9 | −7.4 (3) | C4—C5—C6—C7 | 0.1 (6) |
| N1—Cu1—O2—C9 | −128.4 (7) | Cl1—C5—C6—C7 | −179.4 (3) |
| S1—Cu1—O2—C9 | 176.3 (3) | C5—C6—C7—C8 | 0.7 (6) |
| O1—Cu1—S1—C1 | 82.5 (12) | C5—C6—C7—Cl2 | −179.5 (3) |
| N1—Cu1—S1—C1 | −1.24 (14) | C6—C7—C8—C3 | −0.5 (6) |
| O2—Cu1—S1—C1 | 172.22 (14) | Cl2—C7—C8—C3 | 179.7 (3) |
| N1—N2—C1—N3 | −179.1 (3) | C4—C3—C8—C7 | −0.5 (6) |
| N1—N2—C1—S1 | 0.9 (4) | C2—C3—C8—C7 | 177.7 (3) |
| Cu1—S1—C1—N2 | 0.6 (3) | Cu1—O2—C9—N4 | −171.5 (3) |
| Cu1—S1—C1—N3 | −179.4 (3) | C10—N4—C9—O2 | 3.2 (7) |
| N2—N1—C2—C3 | 177.6 (3) | C11—N4—C9—O2 | 179.0 (4) |
| Cu1—N1—C2—C3 | −3.5 (5) | C14—N5—C12—O3 | −179.7 (5) |
| N1—C2—C3—C8 | 178.9 (3) | C13—N5—C12—O3 | −1.9 (8) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H3A···N2i | 0.86 | 2.14 | 2.992 (4) | 170 |
| N3—H3B···O3ii | 0.86 | 2.08 | 2.886 (4) | 157 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2219).
References
- Bruker (2007). SAINT andSMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Garcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramirez-Rosales, D. & Zamorano-Ulloa, R. (2002). J. Mol. Struct.604, 57–64.
- Seena, E. B., Maliyeckal, R. & Kurup, P. (2007). Polyhedron, 26, 829–, 36.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477–1482.
- Singh, K., Long, J. R. & Stavropoulos, P. (1997). J. Am. Chem. Soc.119, 2942–2943.
- Valdes-Martinez, J., Toscano, R. A. & Ramirez-Ortiz, J. (1995). Polyhedron, 14, 579–583.
- Zimmer, M., Schulte, G., Luo, X.-L. & Crabtree, R. H. (1991). Angew. Chem. Int. Ed. Engl.30, 193–194.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008982/om2219sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008982/om2219Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



