Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 2;64(Pt 5):o787. doi: 10.1107/S1600536808008556

3-(3,5-Dichloro­anilinocarbon­yl)propionic acid

Farooq Ali Shah a, M Nawaz Tahir b,*, Saqib Ali a, Muhammad Akram Kashmiri c
PMCID: PMC2961138  PMID: 21202280

Abstract

The crystal structure of the title compound, C10H9Cl2NO3, consists of dimers due to inter­molecular O—H⋯O hydrogen bonding forming an R 2 2(8) ring through the carboxyl­ groups. These dimers are linked to each other by inter­molecular hydrogen bonds between the amine group and the adjacent carbonyl O atom. A single C—Cl⋯π inter­action is also observed between the chloro-substituted aromatic rings.

Related literature

For related literature, see: Nath et al. (2001); Wardell et al. (2006).graphic file with name e-64-0o787-scheme1.jpg

Experimental

Crystal data

  • C10H9Cl2NO3

  • M r = 262.08

  • Triclinic, Inline graphic

  • a = 4.8568 (2) Å

  • b = 8.6677 (4) Å

  • c = 13.9038 (8) Å

  • α = 74.467 (3)°

  • β = 80.495 (2)°

  • γ = 82.712 (3)°

  • V = 554.09 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 (2) K

  • 0.25 × 0.12 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.870, T max = 0.945

  • 12157 measured reflections

  • 2971 independent reflections

  • 2065 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.125

  • S = 1.07

  • 2971 reflections

  • 172 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008556/fj2109sup1.cif

e-64-0o787-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008556/fj2109Isup2.hkl

e-64-0o787-Isup2.hkl (142.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.84 (3) 2.07 (3) 2.904 (2) 175 (2)
O1—H1⋯O2ii 0.92 (4) 1.74 (4) 2.658 (3) 175 (4)
C7—Cl1⋯Cgiii 1.74 (1) 3.54 (1) 4.033 (2) 93 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg is the centroid of atoms C5–C10.

Acknowledgments

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for funding the purchase of the diffractometer. Dr Saqib Ali is also grateful to the PSF for financial support under project No. PSF/R&D/C–QU/Chem(270).

supplementary crystallographic information

Comment

Carboxylic acids catch the interest of people due to wide use of their metal complexes in biological and industrial field. On the other hand amino acids are one of the best sources to formulate the structure-activity correlation of metal derivatives as a biologically active agent (Nath et al., 2001) and widen the scope of investigation on the coordination behavior of the ligand in biological system. The title compound (I) has been prepared for complexation with different metals.

The structure of 3-(3-Nitrophenylaminocarbonyl)-propionic acid (Wardell et al., 2006) has been published. The title compound have replacement of 3-nitro with Cl and also an additional Cl-atom at 5-position of benzene ring. Therefore, the bond distances and packing of (I) is being compared with the mentioned reported structure. In (I) the C==O bond distances for carboxylate and carbonyl group have values of (C1==O2: 1.219 (3) Å) and (C4==O3: 1.225 (2) Å) in comparison to 1.223 (2) and 1.2214 (17) Å, respectively. The C—N bond distances are compareable within experimental errors. In both compounds similar intermolecular H-bonding (Table 1, Fig. 2) has been observed. The dihedral angle between the aromatic ring A(C5—C10) and (C1,C2,C3,O1,O2) have a value of 82.24 (8)°, whereas with (N1,C3,C4,O3) its value is 44.42 (12)°. The value of dihedral angle between (C1,C2,C3,O1,O2) and (N1,C3,C4,O3) is 38.36 (13)°. There exist a single C—Cl···π interaction at a distance of 3.5398 (11) Å [C7—CL1···CgAiii: symmetry code iii = -1 + x, y, z].

Experimental

3,5-Dichloroaniline (16.2 g, 0.1 mole) and succinic anhydride (10 g, 0.1 mole) were dissolved in glacial acetic acid separately and mixed. The mixed solution was stirred at room temperature for 24 h. The precipitated material was filtered, washed with distilled water and dried at 413–423 K. The title compound (I) was obtained by recrystallizing the dried product using aceton. (Yield: 90%, m.p. 437 K).

Figures

Fig. 1.

Fig. 1.

ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C10H9Cl2NO3 with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Fig. 2.

Fig. 2.

The unit cell packing of (I) (Spek, 2003), showing the dimeric nature and the linkage of dimers.

Crystal data

C10H9Cl2NO3 Z = 2
Mr = 262.08 F000 = 268
Triclinic, P1 Dx = 1.571 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 4.8568 (2) Å Cell parameters from 2971 reflections
b = 8.6677 (4) Å θ = 1.5–29.2º
c = 13.9038 (8) Å µ = 0.58 mm1
α = 74.467 (3)º T = 296 (2) K
β = 80.495 (2)º Needle, colourless
γ = 82.712 (3)º 0.25 × 0.12 × 0.10 mm
V = 554.09 (5) Å3

Data collection

Bruker KappaAPEXII CCD diffractometer 2971 independent reflections
Radiation source: fine-focus sealed tube 2065 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.027
Detector resolution: 7.4 pixels mm-1 θmax = 29.2º
T = 296(2) K θmin = 1.5º
ω scans h = −6→6
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −11→11
Tmin = 0.870, Tmax = 0.945 l = −19→18
12157 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 Only H-atom coordinates refined
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2158P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
2971 reflections Δρmax = 0.27 e Å3
172 parameters Δρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.50817 (12) 1.03658 (7) 0.31192 (6) 0.0754 (2)
Cl2 0.18783 (13) 0.70434 (7) 0.57110 (5) 0.0704 (2)
O1 0.1715 (4) 0.0213 (3) 0.07439 (17) 0.0910 (7)
H1 0.281 (8) −0.046 (4) 0.039 (3) 0.109*
O2 0.5114 (3) 0.1840 (3) 0.01798 (15) 0.0829 (6)
O3 −0.1931 (3) 0.5285 (3) 0.18654 (16) 0.0814 (6)
N1 0.2023 (3) 0.5827 (3) 0.23147 (16) 0.0607 (5)
H1A 0.377 (6) 0.563 (3) 0.222 (2) 0.073*
C1 0.2819 (4) 0.1536 (4) 0.06543 (17) 0.0629 (7)
C2 0.1014 (4) 0.2656 (4) 0.1188 (2) 0.0636 (7)
H2A −0.054 (6) 0.295 (3) 0.089 (2) 0.076*
H2B 0.031 (6) 0.202 (3) 0.186 (2) 0.076*
C3 0.2413 (4) 0.4095 (4) 0.1194 (2) 0.0653 (7)
H3A 0.413 (6) 0.381 (3) 0.139 (2) 0.078*
H3B 0.275 (6) 0.480 (3) 0.051 (2) 0.078*
C4 0.0626 (4) 0.5118 (3) 0.18182 (18) 0.0588 (6)
C5 0.0789 (4) 0.6763 (3) 0.29919 (18) 0.0525 (5)
C6 −0.1369 (4) 0.7959 (3) 0.2744 (2) 0.0558 (5)
H6 −0.196 (5) 0.813 (3) 0.208 (2) 0.067*
C7 −0.2454 (4) 0.8838 (2) 0.3433 (2) 0.0556 (6)
C8 −0.1529 (4) 0.8582 (2) 0.4348 (2) 0.0565 (6)
H8 −0.234 (6) 0.918 (3) 0.4805 (19) 0.068*
C9 0.0627 (4) 0.7390 (2) 0.45673 (19) 0.0529 (5)
C10 0.1799 (4) 0.6482 (2) 0.39000 (19) 0.0534 (5)
H10 0.323 (5) 0.569 (3) 0.4041 (18) 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0467 (3) 0.0511 (3) 0.1229 (6) 0.0104 (2) −0.0224 (3) −0.0129 (3)
Cl2 0.0688 (4) 0.0548 (3) 0.0942 (5) −0.0021 (3) −0.0275 (3) −0.0220 (3)
O1 0.0561 (10) 0.1287 (19) 0.1042 (16) −0.0241 (11) 0.0243 (10) −0.0704 (14)
O2 0.0471 (9) 0.1186 (16) 0.0902 (13) −0.0130 (9) 0.0204 (9) −0.0543 (12)
O3 0.0227 (6) 0.1166 (16) 0.1185 (15) 0.0053 (8) −0.0064 (8) −0.0601 (13)
N1 0.0212 (7) 0.0772 (13) 0.0841 (14) 0.0006 (7) −0.0002 (7) −0.0273 (11)
C1 0.0344 (9) 0.110 (2) 0.0533 (13) −0.0055 (11) −0.0032 (9) −0.0381 (13)
C2 0.0293 (9) 0.104 (2) 0.0631 (15) −0.0026 (10) −0.0004 (9) −0.0360 (14)
C3 0.0273 (9) 0.0925 (19) 0.0749 (16) 0.0001 (10) 0.0053 (9) −0.0290 (14)
C4 0.0240 (8) 0.0786 (15) 0.0716 (15) −0.0001 (8) −0.0007 (8) −0.0208 (12)
C5 0.0242 (7) 0.0512 (11) 0.0789 (15) −0.0053 (7) 0.0001 (8) −0.0146 (10)
C6 0.0306 (8) 0.0564 (13) 0.0747 (15) −0.0046 (8) −0.0058 (9) −0.0074 (11)
C7 0.0301 (8) 0.0381 (10) 0.0934 (17) −0.0015 (7) −0.0078 (9) −0.0086 (10)
C8 0.0404 (10) 0.0379 (11) 0.0926 (18) −0.0046 (8) −0.0083 (10) −0.0187 (11)
C9 0.0406 (9) 0.0367 (10) 0.0822 (15) −0.0072 (8) −0.0133 (9) −0.0118 (10)
C10 0.0337 (9) 0.0388 (10) 0.0864 (17) −0.0017 (7) −0.0114 (9) −0.0125 (10)

Geometric parameters (Å, °)

Cl1—C7 1.737 (2) C3—C4 1.503 (3)
Cl2—C9 1.734 (2) C3—H3A 0.91 (3)
O1—C1 1.295 (3) C3—H3B 0.99 (3)
O1—H1 0.92 (4) C5—C10 1.380 (3)
O2—C1 1.219 (3) C5—C6 1.394 (3)
O3—C4 1.225 (2) C6—C7 1.378 (3)
N1—C4 1.343 (3) C6—H6 0.98 (3)
N1—C5 1.415 (3) C7—C8 1.372 (3)
N1—H1A 0.84 (3) C8—C9 1.386 (3)
C1—C2 1.488 (3) C8—H8 0.93 (3)
C2—C3 1.497 (4) C9—C10 1.381 (3)
C2—H2A 0.90 (3) C10—H10 0.92 (3)
C2—H2B 0.97 (3)
C1—O1—H1 113 (2) O3—C4—C3 121.8 (2)
C4—N1—C5 125.67 (16) N1—C4—C3 115.51 (17)
C4—N1—H1A 114.4 (19) C10—C5—C6 120.6 (2)
C5—N1—H1A 119.8 (19) C10—C5—N1 118.47 (19)
O2—C1—O1 123.4 (2) C6—C5—N1 121.0 (2)
O2—C1—C2 123.1 (3) C7—C6—C5 118.0 (2)
O1—C1—C2 113.5 (2) C7—C6—H6 124.9 (15)
C1—C2—C3 113.79 (18) C5—C6—H6 117.1 (15)
C1—C2—H2A 107.1 (18) C8—C7—C6 123.18 (19)
C3—C2—H2A 111.1 (18) C8—C7—Cl1 118.42 (18)
C1—C2—H2B 107.3 (16) C6—C7—Cl1 118.39 (19)
C3—C2—H2B 114.0 (16) C7—C8—C9 117.3 (2)
H2A—C2—H2B 103 (2) C7—C8—H8 121.1 (17)
C2—C3—C4 112.22 (18) C9—C8—H8 121.6 (17)
C2—C3—H3A 111.7 (18) C10—C9—C8 121.8 (2)
C4—C3—H3A 111.0 (17) C10—C9—Cl2 119.54 (16)
C2—C3—H3B 110.6 (17) C8—C9—Cl2 118.68 (19)
C4—C3—H3B 105.7 (17) C5—C10—C9 119.2 (2)
H3A—C3—H3B 105 (2) C5—C10—H10 118.7 (16)
O3—C4—N1 122.7 (2) C9—C10—H10 122.1 (16)
O2—C1—C2—C3 −7.0 (4) C5—C6—C7—C8 −0.6 (3)
O1—C1—C2—C3 172.9 (2) C5—C6—C7—Cl1 178.35 (15)
C1—C2—C3—C4 −174.8 (2) C6—C7—C8—C9 0.9 (3)
C5—N1—C4—O3 4.0 (4) Cl1—C7—C8—C9 −178.06 (14)
C5—N1—C4—C3 −176.1 (2) C7—C8—C9—C10 −0.4 (3)
C2—C3—C4—O3 −34.9 (4) C7—C8—C9—Cl2 179.37 (15)
C2—C3—C4—N1 145.1 (2) C6—C5—C10—C9 0.6 (3)
C4—N1—C5—C10 133.9 (2) N1—C5—C10—C9 179.70 (17)
C4—N1—C5—C6 −47.0 (3) C8—C9—C10—C5 −0.3 (3)
C10—C5—C6—C7 −0.2 (3) Cl2—C9—C10—C5 179.91 (15)
N1—C5—C6—C7 −179.26 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3i 0.84 (3) 2.07 (3) 2.904 (2) 175 (2)
O1—H1···O2ii 0.92 (4) 1.74 (4) 2.658 (3) 175 (4)
C7—Cl1···Cgiii 1.737 (2) 3.5398 (11) 4.033 (2) 93.34 (7)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2109).

References

  1. Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev.215, 99–149.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o45–o46. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008556/fj2109sup1.cif

e-64-0o787-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008556/fj2109Isup2.hkl

e-64-0o787-Isup2.hkl (142.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES