Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 16;64(Pt 5):o856. doi: 10.1107/S1600536808005850

Dimethyl 2,2-bis­(2-cyano­ethyl)malonate

Guo-Wei Wang a, Ling-Hua Zhuang a, Wen-Yuan Wu a, Jin-Tang Wang a,*
PMCID: PMC2961140  PMID: 21202343

Abstract

The asymmetric unit of the title compound, C11H14N2O4, contains one half-mol­ecule; a twofold rotation axis passes through the central C atom. Inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into a one-dimensional supra­molecular structure.

Related literature

For general background, see: Kim et al. (2001); Chetia et al. (2004); Zhang et al. (2004); Ranu & Banerjee (2005). For bond–length data, see: Allen et al. (1987).graphic file with name e-64-0o856-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O4

  • M r = 238.24

  • Monoclinic, Inline graphic

  • a = 13.071 (3) Å

  • b = 8.5060 (17) Å

  • c = 10.914 (2) Å

  • β = 90.55 (3)°

  • V = 1213.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.961, T max = 0.975

  • 1140 measured reflections

  • 1091 independent reflections

  • 860 reflections with I > 2σ(I)

  • R int = 0.048

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.155

  • S = 0.99

  • 1091 reflections

  • 78 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005850/rk2080sup1.cif

e-64-0o856-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005850/rk2080Isup2.hkl

e-64-0o856-Isup2.hkl (54.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯N1i 0.96 2.57 3.494 (5) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Dicarbonyl compounds represent an important class of starting materials to increase the carbon number of organic compounds (Kim et al., 2001). Some dicarbonyl compounds are useful for the synthesis of enantiomerically pure alcohols (Chetia et al., 2004).

Many dicarbonyl compounds have been synthesized with "Michael Addition" method using diethy malonate as starting compound, but only a few "Michael Addition" diadducts were synthesized under normal condition (Zhang et al., 2004; Ranu & Banerjee, 2005). We are focusing our synthetic and structure studies on new products of "Michael Addition" diadducts from dicarbonyl compounds. We here report the crystal structure of the title compound (I).

The atom–numbering scheme of I is shown in Fig. 1, and all bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit contains one half–molecule, and C4 lies on the twofold rotation axis vertical to ac plane, which generates the other half–molecule. An intermolecular C—H···N hydrogen bond (table and Fig. 2) helps to establish the 1–D supramolecular structure.

Experimental

Dimethyl malonate (50 mmol) was dissolves in n–hexane (20 ml), then anhydrous potassium carbonate (100 mmol) and tetrabutylammonium bromide (1 g) was added. Finally acrylonitrile (100 mmol) was slowly dropped to the solution above. The resulting mixture was refluxed for 12 h, and 100 ml water was added to the mixture and the organic layer was dried with magnesium sulfate and vacuumed to removed the solvent. Then the crude compound I was obtained. It was crystallized from ethyl acetate (15 ml). Crystals of I suitable for X–ray diffraction were obtained by slow evaporation of an alcohol solution. 1H NMR (CDCl3, δ, p.p.m.) 3.83 (s, 6H), 2.47 (t, 4H), 2.26 (t, 4H).

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for methylene H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of I showing the atom–numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The 1–D supramolecular structure developed by C—H···N hydrogen bonds (dashed lines) [Symmetry codes: (i) -x, 2 - y, 1 - z].

Crystal data

C11H14N2O4 F000 = 504
Mr = 238.24 Dx = 1.304 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 13.071 (3) Å θ = 10–14º
b = 8.5060 (17) Å µ = 0.10 mm1
c = 10.914 (2) Å T = 293 (2) K
β = 90.55 (3)º Block, colourless
V = 1213.4 (4) Å3 0.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.048
Radiation source: Fine–focus sealed tube θmax = 25.2º
Monochromator: Graphite θmin = 2.9º
T = 293(2) K h = −15→15
ω/2θ scans k = 0→10
Absorption correction: ψ scan(North et al., 1968) l = 0→12
Tmin = 0.961, Tmax = 0.975 3 standard reflections
1140 measured reflections every 200 reflections
1091 independent reflections intensity decay: none
860 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: Difmap
Least-squares matrix: Full Hydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.155   w = 1/[σ2(Fo2) + (0.0591P)2 + 3.2284P] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
1091 reflections Δρmax = 0.21 e Å3
78 parameters Δρmin = −0.24 e Å3
Primary atom site location: Direct Extinction correction: None

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and RR–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.1143 (3) 0.5595 (3) 0.4119 (3) 0.0730 (10)
C1 −0.1098 (2) 0.6248 (3) 0.5039 (3) 0.0471 (7)
O1 0.15852 (15) 1.0070 (2) 0.6705 (2) 0.0516 (6)
O2 0.09191 (13) 1.1101 (2) 0.84034 (16) 0.0402 (5)
C2 −0.1041 (3) 0.7072 (4) 0.6228 (3) 0.0589 (9)
H2A −0.1056 0.6311 0.6890 0.071*
H2B −0.1628 0.7760 0.6312 0.071*
C3 −0.00519 (19) 0.8043 (3) 0.6315 (2) 0.0333 (6)
H3A −0.0013 0.8737 0.5612 0.040*
H3B 0.0532 0.7340 0.6293 0.040*
C4 0.0000 0.9032 (4) 0.7500 0.0301 (8)
C5 0.09365 (19) 1.0115 (3) 0.7444 (2) 0.0309 (6)
C6 0.1753 (2) 1.2212 (4) 0.8494 (3) 0.0481 (8)
H6A 0.1667 1.2853 0.9209 0.072*
H6B 0.1756 1.2867 0.7778 0.072*
H6C 0.2390 1.1653 0.8555 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0893 (16) 0.0651 (16) 0.0628 (19) 0.0048 (16) −0.0436 (17) −0.0172 (15)
C1 0.0547 (18) 0.0469 (14) 0.0532 (17) −0.0015 (14) −0.0192 (13) −0.0050 (14)
O1 0.0430 (12) 0.0432 (12) 0.0585 (14) −0.0076 (9) 0.0028 (10) −0.0102 (10)
O2 0.0498 (10) 0.0442 (10) 0.0465 (11) −0.0111 (8) −0.0098 (8) −0.0088 (8)
C2 0.0571 (18) 0.0484 (17) 0.0582 (13) −0.0162 (16) −0.0205 (16) −0.0162 (15)
C3 0.0404 (14) 0.0479 (12) 0.0355 (13) 0.0018 (11) −0.0067 (10) −0.0007 (10)
C4 0.0476 (19) 0.0472 (16) 0.0355 (18) −0.0017 (10) −0.0025 (14) 0.0006 (10)
C5 0.0421 (13) 0.0469 (13) 0.0344 (13) 0.0058 (10) −0.0093 (10) 0.0032 (10)
C6 0.0477 (17) 0.0452 (16) 0.0549 (18) −0.0162 (14) −0.0138 (13) −0.0046 (13)

Geometric parameters (Å, °)

N1—C1 1.149 (4) C3—H3A 0.9700
C1—C2 1.476 (4) C3—H3B 0.9700
O1—C5 1.177 (3) C4—C5 1.534 (3)
O2—C5 1.341 (3) C4—C5i 1.534 (3)
O2—C6 1.445 (3) C4—C3i 1.544 (3)
C2—C3 1.537 (4) C6—H6A 0.9600
C2—H2A 0.9700 C6—H6B 0.9600
C2—H2B 0.9700 C6—H6C 0.9600
C3—C4 1.544 (3)
N1—C1—C2 179.4 (4) C5—C4—C3 108.85 (13)
C5—O2—C6 116.3 (2) C5i—C4—C3 109.39 (13)
C1—C2—C3 110.1 (3) C5—C4—C3i 109.39 (13)
C1—C2—H2A 109.6 C5i—C4—C3i 108.85 (13)
C3—C2—H2A 109.6 C3—C4—C3i 113.9 (3)
C1—C2—H2B 109.6 O1—C5—O2 125.0 (2)
C3—C2—H2B 109.6 O1—C5—C4 126.0 (2)
H2A—C2—H2B 108.1 O2—C5—C4 108.96 (19)
C2—C3—C4 112.0 (2) O2—C6—H6A 109.5
C2—C3—H3A 109.2 O2—C6—H6B 109.5
C4—C3—H3A 109.2 H6A—C6—H6B 109.5
C2—C3—H3B 109.2 O2—C6—H6C 109.5
C4—C3—H3B 109.2 H6A—C6—H6C 109.5
H3A—C3—H3B 107.9 H6B—C6—H6C 109.5
C5—C4—C5i 106.2 (3)
C1—C2—C3—C4 175.4 (2) C5i—C4—C5—O1 −126.7 (3)
C2—C3—C4—C5 −173.0 (2) C3—C4—C5—O1 −9.0 (3)
C2—C3—C4—C5i −57.4 (3) C3i—C4—C5—O1 116.0 (3)
C2—C3—C4—C3i 64.63 (19) C5i—C4—C5—O2 55.37 (14)
C6—O2—C5—O1 2.0 (4) C3—C4—C5—O2 173.02 (18)
C6—O2—C5—C4 180.0 (2) C3i—C4—C5—O2 −61.9 (2)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6B···N1ii 0.96 2.57 3.494 (5) 161

Symmetry codes: (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2080).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Chetia, A., Saikia, C. J., Lekhok, K. C. & Boruah, R. C. (2004). Tetrahedron Lett.45, 2649–2651.
  3. Enraf–Nonius (1989). CAD–4 Software. Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Kim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett.42, 6299–6301.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Ranu, B. C. & Banerjee, S. (2005). Org. Lett.7, 3049–3052. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Zhang, Z., Dong, Y.-W., Wang, G.-W. & Komatsu, K. (2004). Synlett, 1, 61–64.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005850/rk2080sup1.cif

e-64-0o856-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005850/rk2080Isup2.hkl

e-64-0o856-Isup2.hkl (54.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES