Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 16;64(Pt 5):o847. doi: 10.1107/S1600536808009690

1,1,3-Trimethyl-3-phenyl­indane

Jian Men a, Mei-Jia Yang a, Yan Jiang a, Hua Chen a, Guo-Wei Gao a,*
PMCID: PMC2961142  PMID: 21202335

Abstract

In the title compound, C18H20, the five-membered ring of the indane fragment adopts an envelope conformation, with the flap atom deviating by 0.399 (3) Å from the plane of the remaining four atoms. The dihedral angle between the phenyl ring and the indane benzene ring is 79.58 (7)°.

Related literature

For related literature, see: Bateman & Gordon (1974, 1976); Ghosh & Mittal (1996); Feger et al. (1989).graphic file with name e-64-0o847-scheme1.jpg

Experimental

Crystal data

  • C18H20

  • M r = 236.34

  • Triclinic, Inline graphic

  • a = 8.192 (2) Å

  • b = 8.426 (3) Å

  • c = 11.113 (4) Å

  • α = 69.30 (3)°

  • β = 79.44 (5)°

  • γ = 80.37 (2)°

  • V = 701.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 291 (2) K

  • 0.46 × 0.44 × 0.42 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3682 measured reflections

  • 2582 independent reflections

  • 1770 reflections with I > 2σ(I)

  • R int = 0.007

  • 3 standard reflections every 200 reflections intensity decay: 0.7%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.117

  • S = 1.06

  • 2582 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009690/gk2139sup1.cif

e-64-0o847-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009690/gk2139Isup2.hkl

e-64-0o847-Isup2.hkl (126.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Undergraduates’ Innovative Experiment Project of China for financial support, and thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

Polyimides are well known for possessing excellent thermal and oxidative stability, as well as excellent mechanical properties (Ghosh & Mittal, 1996; Feger et al., 1989). Furthermore, polyimides with phenylindane diamines and/or dianhydrides incorporated into the polyimide backbone have been found to be soluble in high concentration in polar organic solvents (Bateman & Gordon, 1974). Phenylindane diamines are prepared by a process comprising acid-catalyzed dimerization of α-methylstyrene and subsequent nitration and reduction of the 1,1,3-trimethyl-3-phenyl-2,3-dihydro-1H-indene (Bateman & Gordon, 1976).

The molecule of the title compound is shown in Fig. 1. Rings A (C1–C6) and B (C13–C18) are planar and form dihedral angle of 79.58 (7)°. The B ring forms dihedral angle of 25.38 (14)° with the plane defined by the indane Csp3 atoms C7, C9 and C10.

Experimental

α-Methylstyrene (32.0 g, 0.30 mol) was added to a 500 ml flask equipped with a condenser and a mechanical stirrer, followed by slow addition of a previously prepared mixture of H2SO4 (68 ml) and H2O (130 ml). The reaction mixture was refluxed for 20 h. After it was cooled to room temperature, the lower acid phase was drawn off and discarded. The organic phase containing the phenylindane was washed with water several times. The product was recrystallized from methanol that afforded white crystals (24 g, yield 68%, m.p. 323–324 K).

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq (aromatic, methylene) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C18H20 Z = 2
Mr = 236.34 F000 = 256
Triclinic, P1 Dx = 1.120 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.192 (2) Å Cell parameters from 28 reflections
b = 8.426 (3) Å θ = 4.4–7.7º
c = 11.113 (4) Å µ = 0.06 mm1
α = 69.30 (3)º T = 291 (2) K
β = 79.44 (5)º Block, colourless
γ = 80.37 (2)º 0.46 × 0.44 × 0.42 mm
V = 701.0 (7) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.007
Radiation source: fine-focus sealed tube θmax = 25.5º
Monochromator: graphite θmin = 2.6º
T = 291(2) K h = −9→9
ω/2τ scans k = −3→10
Absorption correction: none l = −12→13
3682 measured reflections 3 standard reflections
2582 independent reflections every 200 reflections
1770 reflections with I > 2σ(I) intensity decay: 0.7%

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040   w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0915P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.17 e Å3
2582 reflections Δρmin = −0.14 e Å3
170 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.154 (10)
Secondary atom site location: difference Fourier map

Special details

Experimental. 1H NMR (400 MHz, CDCl3): δ = 1.03, 1.35, 1.69 (s, 3H, –CH3), 2.21 and 2.40 (d, 2H, –CH2–), 7.11–7.29 (m, 9H, Ar—H).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C18 0.39195 (18) 0.00422 (18) 0.21135 (14) 0.0428 (4)
C6 0.20481 (17) 0.27044 (18) 0.22736 (14) 0.0436 (4)
C14 0.6116 (2) −0.1842 (2) 0.32179 (15) 0.0527 (4)
H14 0.7136 −0.2011 0.3526 0.063*
C13 0.54458 (18) −0.02135 (18) 0.25548 (14) 0.0421 (4)
C7 0.34020 (18) 0.19224 (19) 0.14280 (14) 0.0453 (4)
C17 0.3069 (2) −0.1345 (2) 0.23220 (17) 0.0567 (4)
H17 0.2043 −0.1181 0.2025 0.068*
C10 0.61857 (19) 0.14541 (19) 0.22095 (15) 0.0478 (4)
C1 0.1330 (2) 0.4375 (2) 0.17672 (18) 0.0595 (5)
H1 0.1670 0.5006 0.0908 0.071*
C5 0.1502 (2) 0.1821 (2) 0.35573 (16) 0.0542 (4)
H5 0.1951 0.0697 0.3928 0.065*
C3 −0.0391 (2) 0.4221 (3) 0.3779 (2) 0.0665 (5)
H3 −0.1201 0.4724 0.4279 0.080*
C15 0.5266 (2) −0.3214 (2) 0.34208 (17) 0.0606 (5)
H15 0.5716 −0.4313 0.3863 0.073*
C2 0.0126 (2) 0.5121 (2) 0.2504 (2) 0.0696 (5)
H2 −0.0339 0.6240 0.2137 0.083*
C4 0.0303 (2) 0.2575 (3) 0.43009 (18) 0.0653 (5)
H4 −0.0034 0.1957 0.5164 0.078*
C9 0.5091 (2) 0.2673 (2) 0.11982 (16) 0.0543 (4)
H9A 0.5650 0.2782 0.0329 0.065*
H9B 0.4892 0.3795 0.1289 0.065*
C16 0.3754 (2) −0.2966 (2) 0.29712 (18) 0.0640 (5)
H16 0.3192 −0.3899 0.3107 0.077*
C8 0.2796 (2) 0.2204 (2) 0.01297 (16) 0.0664 (5)
H8A 0.3617 0.1654 −0.0374 0.100*
H8B 0.2635 0.3405 −0.0340 0.100*
H8C 0.1759 0.1728 0.0293 0.100*
C11 0.5994 (3) 0.1997 (2) 0.34135 (19) 0.0690 (5)
H11A 0.4832 0.2128 0.3749 0.104*
H11B 0.6446 0.3062 0.3180 0.104*
H11C 0.6585 0.1139 0.4065 0.104*
C12 0.8028 (2) 0.1333 (3) 0.1630 (2) 0.0723 (6)
H12A 0.8426 0.2429 0.1377 0.109*
H12B 0.8146 0.0980 0.0883 0.109*
H12C 0.8669 0.0513 0.2266 0.109*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C18 0.0409 (8) 0.0477 (9) 0.0410 (8) −0.0052 (7) −0.0006 (6) −0.0185 (7)
C6 0.0386 (8) 0.0477 (9) 0.0461 (9) −0.0021 (7) −0.0125 (7) −0.0155 (7)
C14 0.0555 (10) 0.0501 (10) 0.0506 (9) 0.0029 (8) −0.0100 (8) −0.0171 (8)
C13 0.0434 (8) 0.0441 (8) 0.0388 (8) −0.0017 (6) −0.0031 (6) −0.0162 (7)
C7 0.0423 (8) 0.0506 (9) 0.0411 (8) −0.0023 (7) −0.0078 (6) −0.0131 (7)
C17 0.0481 (9) 0.0637 (11) 0.0656 (11) −0.0115 (8) −0.0018 (8) −0.0309 (9)
C10 0.0422 (8) 0.0472 (9) 0.0537 (9) −0.0060 (7) −0.0078 (7) −0.0155 (7)
C1 0.0623 (11) 0.0537 (10) 0.0595 (11) −0.0005 (8) −0.0128 (9) −0.0157 (8)
C5 0.0530 (10) 0.0568 (10) 0.0482 (9) 0.0022 (8) −0.0064 (8) −0.0158 (8)
C3 0.0483 (10) 0.0852 (14) 0.0811 (14) 0.0089 (9) −0.0138 (9) −0.0509 (12)
C15 0.0738 (12) 0.0422 (9) 0.0581 (10) −0.0012 (8) −0.0002 (9) −0.0138 (8)
C2 0.0668 (12) 0.0601 (11) 0.0882 (15) 0.0127 (9) −0.0238 (11) −0.0348 (11)
C4 0.0590 (11) 0.0837 (14) 0.0536 (10) −0.0014 (10) −0.0020 (9) −0.0289 (10)
C9 0.0491 (9) 0.0510 (9) 0.0525 (10) −0.0069 (7) −0.0026 (7) −0.0063 (8)
C16 0.0715 (12) 0.0493 (10) 0.0735 (12) −0.0191 (9) 0.0083 (10) −0.0267 (9)
C8 0.0659 (12) 0.0851 (13) 0.0473 (10) 0.0056 (10) −0.0148 (9) −0.0236 (9)
C11 0.0802 (13) 0.0639 (11) 0.0758 (13) −0.0119 (9) −0.0212 (10) −0.0317 (10)
C12 0.0464 (10) 0.0720 (12) 0.0943 (15) −0.0103 (9) −0.0070 (10) −0.0219 (11)

Geometric parameters (Å, °)

C18—C13 1.382 (2) C5—H5 0.9300
C18—C17 1.388 (2) C3—C4 1.368 (3)
C18—C7 1.520 (2) C3—C2 1.375 (3)
C6—C5 1.384 (3) C3—H3 0.9300
C6—C1 1.388 (2) C15—C16 1.376 (3)
C6—C7 1.536 (2) C15—H15 0.9300
C14—C15 1.379 (2) C2—H2 0.9300
C14—C13 1.382 (2) C4—H4 0.9300
C14—H14 0.9300 C9—H9A 0.9700
C13—C10 1.519 (2) C9—H9B 0.9700
C7—C8 1.538 (2) C16—H16 0.9300
C7—C9 1.558 (2) C8—H8A 0.9600
C17—C16 1.377 (3) C8—H8B 0.9600
C17—H17 0.9300 C8—H8C 0.9600
C10—C12 1.530 (2) C11—H11A 0.9600
C10—C11 1.535 (3) C11—H11B 0.9600
C10—C9 1.539 (2) C11—H11C 0.9600
C1—C2 1.378 (3) C12—H12A 0.9600
C1—H1 0.9300 C12—H12B 0.9600
C5—C4 1.385 (2) C12—H12C 0.9600
C13—C18—C17 119.85 (15) C16—C15—C14 120.29 (16)
C13—C18—C7 111.75 (13) C16—C15—H15 119.9
C17—C18—C7 128.40 (14) C14—C15—H15 119.9
C5—C6—C1 116.91 (16) C3—C2—C1 120.35 (18)
C5—C6—C7 122.83 (14) C3—C2—H2 119.8
C1—C6—C7 120.26 (15) C1—C2—H2 119.8
C15—C14—C13 119.63 (16) C3—C4—C5 120.67 (18)
C15—C14—H14 120.2 C3—C4—H4 119.7
C13—C14—H14 120.2 C5—C4—H4 119.7
C14—C13—C18 120.23 (15) C10—C9—C7 108.20 (13)
C14—C13—C10 128.01 (14) C10—C9—H9A 110.1
C18—C13—C10 111.76 (14) C7—C9—H9A 110.1
C18—C7—C6 112.36 (13) C10—C9—H9B 110.1
C18—C7—C8 111.23 (14) C7—C9—H9B 110.1
C6—C7—C8 109.72 (13) H9A—C9—H9B 108.4
C18—C7—C9 100.82 (13) C15—C16—C17 120.42 (16)
C6—C7—C9 111.63 (13) C15—C16—H16 119.8
C8—C7—C9 110.83 (14) C17—C16—H16 119.8
C16—C17—C18 119.56 (16) C7—C8—H8A 109.5
C16—C17—H17 120.2 C7—C8—H8B 109.5
C18—C17—H17 120.2 H8A—C8—H8B 109.5
C13—C10—C12 112.22 (14) C7—C8—H8C 109.5
C13—C10—C11 110.21 (14) H8A—C8—H8C 109.5
C12—C10—C11 109.67 (15) H8B—C8—H8C 109.5
C13—C10—C9 101.46 (13) C10—C11—H11A 109.5
C12—C10—C9 111.39 (15) C10—C11—H11B 109.5
C11—C10—C9 111.70 (15) H11A—C11—H11B 109.5
C2—C1—C6 121.72 (18) C10—C11—H11C 109.5
C2—C1—H1 119.1 H11A—C11—H11C 109.5
C6—C1—H1 119.1 H11B—C11—H11C 109.5
C6—C5—C4 121.37 (17) C10—C12—H12A 109.5
C6—C5—H5 119.3 C10—C12—H12B 109.5
C4—C5—H5 119.3 H12A—C12—H12B 109.5
C4—C3—C2 118.96 (18) C10—C12—H12C 109.5
C4—C3—H3 120.5 H12A—C12—H12C 109.5
C2—C3—H3 120.5 H12B—C12—H12C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2139).

References

  1. Bateman, J. & Gordon, D. A. (1974). US Patent 3856752.
  2. Bateman, J. & Gordon, D. A. (1976). US Patent 3983092.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Feger, C., Khohasteh, M. M. & McGrath, J. E. (1989). Editors. Polyimides: Chemistry, Materials and Characterization Amsterdam: Elsevier.
  5. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  6. Gabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.
  7. Ghosh, M. K. & Mittal, K. L. (1996). Polyimides: Fundamentals and Applications New York: Dekker.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009690/gk2139sup1.cif

e-64-0o847-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009690/gk2139Isup2.hkl

e-64-0o847-Isup2.hkl (126.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES