Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 10;64(Pt 5):m639. doi: 10.1107/S1600536808008945

(2,2′-Bipyridine-κ2 N,N′)iodido(pyrrol­idine-1-dithio­carboxyl­ato-κ2 S,S′)copper(II)

Le-Qing Fan a,*, Ji-Huai Wu a
PMCID: PMC2961148  PMID: 21202189

Abstract

In the title compound, [Cu(C5H8NS2)I(C10H8N2)], the CuII ion is coordinated by one iodide ion, two N atoms of the bipyridine ligand and two S atoms from the pyrrolidine-1-dithio­carboxyl­ate ligand in a distorted square-pyramidal environment.

Related literature

For related literature, see: Englhardt et al. (1998); Fernández et al. (2000); Koh et al. (2003); Noro et al. (2000); Yaghi et al. (1998).graphic file with name e-64-0m639-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H8NS2)I(C10H8N2)]

  • M r = 492.87

  • Monoclinic, Inline graphic

  • a = 6.606 (3) Å

  • b = 16.212 (8) Å

  • c = 16.405 (8) Å

  • β = 98.399 (10)°

  • V = 1738.3 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) T min = 0.722, T max = 1.000 (expected range = 0.521–0.721)

  • 13239 measured reflections

  • 3983 independent reflections

  • 3326 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.085

  • S = 1.07

  • 3983 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008945/at2555sup1.cif

e-64-0m639-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008945/at2555Isup2.hkl

e-64-0m639-Isup2.hkl (195.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Nos. 50572030, 50372022), the Research Fund of Huaqiao University (No. 06BS216) and the Young Talent Fund of Fujian Province (2007 F3060).

supplementary crystallographic information

Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamates anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Englhardt et al., 1998; Fernández et al., 2000; Koh, et al., 2003). We report here the crystal structure of the title copper(II) complex, (I), contanining a pyrrolidine-1-dithiocarboxylate ligand.

The crystal structure of (I) is built of discrete molecules of the CuII complex (Fig. 1). The CuII ion is five-coordinated in a distorted square-pyramidal environment by one I atom in the apical position, two N atoms from the bipyridine ligand and two S atoms from the pyrrolidine-1-dithiocarboxylate ligand in the basal plane (Table 1).

Experimental

A mixture of Cu(Ac)2.H2O (0.08 g, 0.4 mmol), NaS2CNC4H8.2H2O (0.09 g, 0.4 mmol), 2,2'-bipyridine (0.06 g 0.4 mmol) and NaI.2H2O (0.07 g, 0.4 mmol) was stirred in DMF (15 ml). 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (pyrrolidinyl), Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

[Cu(C5H8NS2)I(C10H8N2)] F000 = 964
Mr = 492.87 Dx = 1.883 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1823 reflections
a = 6.606 (3) Å θ = 2.5–27.5º
b = 16.212 (8) Å µ = 3.27 mm1
c = 16.405 (8) Å T = 293 (2) K
β = 98.399 (10)º Prism, black
V = 1738.3 (15) Å3 0.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 3983 independent reflections
Radiation source: Sealed Tube 3326 reflections with I > 2σ(I)
Monochromator: Graphite Monochromator Rint = 0.029
T = 293(2) K θmax = 27.5º
ω scans θmin = 2.5º
Absorption correction: multi-scan(CrystalClear; Rigaku, 2000) h = −8→8
Tmin = 0.722, Tmax = 1.000 k = −20→21
13239 measured reflections l = −21→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.085   w = 1/[σ2(Fo2) + (0.041P)2 + 0.011P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3983 reflections Δρmax = 0.54 e Å3
199 parameters Δρmin = −0.63 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.47246 (6) 0.43996 (2) 0.34106 (3) 0.03678 (12)
I1 0.22688 (4) 0.387568 (15) 0.190445 (15) 0.04821 (10)
S1 0.37645 (15) 0.34944 (6) 0.43793 (6) 0.0475 (2)
S2 0.74152 (13) 0.34585 (6) 0.36071 (6) 0.0419 (2)
N1 0.6415 (4) 0.22460 (17) 0.45729 (17) 0.0400 (7)
N2 0.3012 (4) 0.53917 (17) 0.36333 (17) 0.0383 (6)
N3 0.6083 (4) 0.52693 (16) 0.28057 (17) 0.0368 (6)
C1 0.5952 (5) 0.2977 (2) 0.4244 (2) 0.0364 (7)
C2 0.5177 (6) 0.1803 (2) 0.5103 (2) 0.0485 (9)
H2A 0.3908 0.1609 0.4789 0.058*
H2B 0.4865 0.2152 0.5548 0.058*
C3 0.6532 (9) 0.1087 (3) 0.5431 (4) 0.0826 (16)
H3A 0.7337 0.1227 0.5955 0.099*
H3B 0.5716 0.0603 0.5504 0.099*
C4 0.7884 (8) 0.0936 (3) 0.4791 (3) 0.0711 (13)
H4A 0.7235 0.0559 0.4373 0.085*
H4B 0.9180 0.0701 0.5039 0.085*
C5 0.8212 (6) 0.1769 (2) 0.4417 (3) 0.0512 (10)
H5A 0.9469 0.2021 0.4682 0.061*
H5B 0.8262 0.1721 0.3831 0.061*
C6 0.1427 (6) 0.5395 (2) 0.4055 (2) 0.0497 (9)
H6A 0.1079 0.4906 0.4297 0.060*
C7 0.0283 (7) 0.6094 (3) 0.4148 (2) 0.0549 (11)
H7A −0.0793 0.6080 0.4455 0.066*
C8 0.0778 (6) 0.6805 (3) 0.3777 (2) 0.0549 (11)
H8A 0.0025 0.7283 0.3822 0.066*
C9 0.2389 (6) 0.6810 (2) 0.3336 (2) 0.0501 (9)
H9A 0.2730 0.7291 0.3079 0.060*
C10 0.3503 (5) 0.60970 (19) 0.3277 (2) 0.0369 (7)
C11 0.5251 (5) 0.60319 (19) 0.2813 (2) 0.0351 (7)
C12 0.6013 (6) 0.6680 (2) 0.2401 (2) 0.0458 (9)
H12A 0.5432 0.7202 0.2411 0.055*
C13 0.7627 (6) 0.6551 (3) 0.1978 (2) 0.0522 (10)
H13A 0.8167 0.6986 0.1708 0.063*
C14 0.8441 (6) 0.5771 (2) 0.1955 (2) 0.0497 (9)
H14A 0.9515 0.5667 0.1661 0.060*
C15 0.7631 (5) 0.5149 (2) 0.2378 (2) 0.0428 (8)
H15A 0.8183 0.4622 0.2365 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0405 (2) 0.0267 (2) 0.0451 (2) 0.00447 (16) 0.01283 (19) 0.00300 (16)
I1 0.04930 (17) 0.04100 (16) 0.05259 (17) −0.00012 (10) 0.00166 (12) −0.00718 (10)
S1 0.0485 (5) 0.0420 (5) 0.0574 (6) 0.0155 (4) 0.0255 (5) 0.0126 (4)
S2 0.0394 (5) 0.0381 (5) 0.0508 (5) 0.0054 (4) 0.0154 (4) 0.0079 (4)
N1 0.0428 (16) 0.0355 (16) 0.0437 (16) 0.0073 (12) 0.0125 (13) 0.0047 (12)
N2 0.0435 (16) 0.0343 (15) 0.0379 (15) 0.0081 (12) 0.0084 (13) 0.0008 (11)
N3 0.0400 (15) 0.0280 (14) 0.0430 (15) 0.0001 (11) 0.0076 (13) −0.0002 (11)
C1 0.0398 (17) 0.0344 (18) 0.0357 (17) 0.0029 (14) 0.0081 (15) −0.0011 (13)
C2 0.053 (2) 0.045 (2) 0.049 (2) 0.0033 (17) 0.0125 (18) 0.0156 (16)
C3 0.094 (4) 0.052 (3) 0.107 (4) 0.018 (3) 0.030 (3) 0.031 (3)
C4 0.095 (4) 0.038 (2) 0.083 (3) 0.020 (2) 0.021 (3) 0.009 (2)
C5 0.049 (2) 0.046 (2) 0.061 (2) 0.0199 (17) 0.0170 (19) 0.0053 (18)
C6 0.054 (2) 0.050 (2) 0.048 (2) 0.0113 (18) 0.0144 (18) 0.0037 (17)
C7 0.055 (2) 0.065 (3) 0.047 (2) 0.022 (2) 0.0126 (19) −0.0027 (18)
C8 0.061 (2) 0.048 (2) 0.054 (2) 0.023 (2) 0.001 (2) −0.0090 (18)
C9 0.063 (2) 0.034 (2) 0.049 (2) 0.0139 (17) −0.0024 (19) −0.0033 (16)
C10 0.0429 (18) 0.0295 (17) 0.0362 (17) 0.0049 (13) −0.0008 (15) −0.0031 (13)
C11 0.0372 (17) 0.0292 (17) 0.0363 (17) −0.0012 (13) −0.0031 (14) 0.0011 (13)
C12 0.051 (2) 0.0270 (18) 0.057 (2) 0.0008 (15) 0.0004 (19) 0.0038 (15)
C13 0.054 (2) 0.044 (2) 0.059 (2) −0.0094 (18) 0.010 (2) 0.0128 (17)
C14 0.052 (2) 0.048 (2) 0.052 (2) −0.0051 (18) 0.0155 (18) 0.0043 (17)
C15 0.0446 (19) 0.037 (2) 0.049 (2) −0.0012 (15) 0.0147 (17) −0.0015 (15)

Geometric parameters (Å, °)

Cu1—N3 2.010 (3) C4—H4A 0.9700
Cu1—N2 2.030 (3) C4—H4B 0.9700
Cu1—S1 2.3185 (12) C5—H5A 0.9700
Cu1—S2 2.3289 (13) C5—H5B 0.9700
Cu1—I1 2.8789 (11) C6—C7 1.382 (5)
S1—C1 1.713 (3) C6—H6A 0.9300
S2—C1 1.712 (3) C7—C8 1.365 (6)
N1—C1 1.319 (4) C7—H7A 0.9300
N1—C2 1.466 (4) C8—C9 1.371 (6)
N1—C5 1.471 (4) C8—H8A 0.9300
N2—C6 1.337 (5) C9—C10 1.381 (5)
N2—C10 1.345 (4) C9—H9A 0.9300
N3—C15 1.336 (4) C10—C11 1.476 (5)
N3—C11 1.354 (4) C11—C12 1.384 (5)
C2—C3 1.516 (5) C12—C13 1.371 (5)
C2—H2A 0.9700 C12—H12A 0.9300
C2—H2B 0.9700 C13—C14 1.377 (6)
C3—C4 1.495 (7) C13—H13A 0.9300
C3—H3A 0.9700 C14—C15 1.375 (5)
C3—H3B 0.9700 C14—H14A 0.9300
C4—C5 1.511 (5) C15—H15A 0.9300
N3—Cu1—N2 80.44 (12) C3—C4—H4B 110.5
N3—Cu1—S1 165.74 (8) C5—C4—H4B 110.5
N2—Cu1—S1 99.36 (9) H4A—C4—H4B 108.7
N3—Cu1—S2 98.11 (9) N1—C5—C4 103.4 (3)
N2—Cu1—S2 158.17 (8) N1—C5—H5A 111.1
S1—Cu1—S2 76.71 (4) C4—C5—H5A 111.1
N3—Cu1—I1 91.12 (8) N1—C5—H5B 111.1
N2—Cu1—I1 97.42 (8) C4—C5—H5B 111.1
S1—Cu1—I1 103.02 (4) H5A—C5—H5B 109.0
S2—Cu1—I1 104.39 (4) N2—C6—C7 122.9 (4)
C1—S1—Cu1 84.31 (12) N2—C6—H6A 118.6
C1—S2—Cu1 84.01 (12) C7—C6—H6A 118.6
C1—N1—C2 124.5 (3) C8—C7—C6 118.2 (4)
C1—N1—C5 123.1 (3) C8—C7—H7A 120.9
C2—N1—C5 112.3 (3) C6—C7—H7A 120.9
C6—N2—C10 118.6 (3) C7—C8—C9 119.7 (4)
C6—N2—Cu1 126.6 (3) C7—C8—H8A 120.2
C10—N2—Cu1 114.8 (2) C9—C8—H8A 120.2
C15—N3—C11 118.7 (3) C8—C9—C10 119.7 (4)
C15—N3—Cu1 126.0 (2) C8—C9—H9A 120.2
C11—N3—Cu1 115.1 (2) C10—C9—H9A 120.2
N1—C1—S2 122.8 (3) N2—C10—C9 121.0 (4)
N1—C1—S1 122.4 (3) N2—C10—C11 114.8 (3)
S2—C1—S1 114.70 (19) C9—C10—C11 124.1 (3)
N1—C2—C3 103.5 (3) N3—C11—C12 120.8 (3)
N1—C2—H2A 111.1 N3—C11—C10 114.8 (3)
C3—C2—H2A 111.1 C12—C11—C10 124.4 (3)
N1—C2—H2B 111.1 C13—C12—C11 119.8 (3)
C3—C2—H2B 111.1 C13—C12—H12A 120.1
H2A—C2—H2B 109.0 C11—C12—H12A 120.1
C4—C3—C2 105.0 (4) C12—C13—C14 119.3 (4)
C4—C3—H3A 110.8 C12—C13—H13A 120.3
C2—C3—H3A 110.8 C14—C13—H13A 120.3
C4—C3—H3B 110.8 C15—C14—C13 118.5 (4)
C2—C3—H3B 110.8 C15—C14—H14A 120.7
H3A—C3—H3B 108.8 C13—C14—H14A 120.7
C3—C4—C5 105.9 (4) N3—C15—C14 122.8 (4)
C3—C4—H4A 110.5 N3—C15—H15A 118.6
C5—C4—H4A 110.5 C14—C15—H15A 118.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2555).

References

  1. Englhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. W. (1998). Inorg. Chem.27, 2371—2373.
  2. Fernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci.11, 153–166.
  3. Koh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater.15, 4544-4554.
  4. Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed.39, 2081–2084. [DOI] [PubMed]
  5. Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474-484.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008945/at2555sup1.cif

e-64-0m639-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008945/at2555Isup2.hkl

e-64-0m639-Isup2.hkl (195.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES