Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 30;64(Pt 5):o946–o947. doi: 10.1107/S1600536808011987

Bispuupehenone from the South Chinese Sea sponge Dysidea sp.

Song Qin a,*, Lei Shi b, Jia Li b, Yue-Wei Guo a
PMCID: PMC2961175  PMID: 21202427

Abstract

Bispuupehenone, C42H54O6, formally results from dimerization of puupehenone, which is constructed of sesquiterpene and benzene units. Bispuupehenone was isolated from the South China Sea sponge Dysidea sp. and the single-crystal X-ray diffraction analysis confirmed the previously reported structure. The mol­ecule is located on a twofold axis and the dimerization forms two fused dibenzopyran systems related by symmetry. In the asymmetric unit, the two cyclohexane rings adopt chair conformations, while the two pyran rings adopt half-chair conformations. The relative stereochemistry and configurations for the ring junctions are in agreement with the structure reported previously.

Related literature

The title compound was first isolated from the Pacific marine sponge Heteronema sp., see Amade et al. (1983). For the biological and pharmaceutical activity of puupehenone, see: Barrero et al. (1998, 1999); Castro et al. (2004); Ciavatta et al. (2007); Longley et al. (1993); Kohmoto et al. (1987); Takamatsu et al. (2003). For the synthesis and semi-synthesis of puupehenone and its derivatives, see: Hamann (2003); Alvarez-Manzaneda et al. (2005, 2007).graphic file with name e-64-0o946-scheme1.jpg

Experimental

Crystal data

  • C42H54O6

  • M r = 654.85

  • Tetragonal, Inline graphic

  • a = 13.5981 (10) Å

  • c = 18.7260 (19) Å

  • V = 3462.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.39 × 0.24 × 0.14 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.743, T max = 0.990

  • 20532 measured reflections

  • 2219 independent reflections

  • 1644 reflections with I > 2σ(I)

  • R int = 0.110

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.113

  • S = 0.94

  • 2219 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011987/bh2164sup1.cif

e-64-0o946-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011987/bh2164Isup2.hkl

e-64-0o946-Isup2.hkl (106.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The research work was financially supported by the National Marine ‘863’ Project (No. 2006 A A09Z412), the Natural Science Foundation of China (Nos. 3073108, 20772136, and 20721003), CAS Key Project (grant KSCX2-YW-R-18) and STCSM Projects (No. 017XD14036 and 06DZ22028), and partially funded by a grant from the Syngenta-SIMM-PhD Studentship Project.

supplementary crystallographic information

Comment

Bispuupehenone (I) was firstly isolated from Pacific marine sponge Heteronema sp. (Amade et al., 1983), and was considered to be generated from co-occurring puupehenone (II) (Fig. 1) by in vitro oxidative coupling. The benzopyrane structure for the dimer is deduced by the comparison of its UV spectrum data with those of a simple dibenzofuran and a simple benzopyran. Although compound (II) and its derivatives have been reported to display a wide range of important biological activities, including antiviral, antifungal, antimalarial, and antitumor activities (Barrero et al., 1998, 1999; Longley et al., 1993; Castro et al., 2004; Ciavatta et al., 2007; Kohmoto et al., 1987; Takamatsu et al., 2003), the biological properties of (I) have been seldom reported. Synthesis and semi-synthesis of puupehenone and its derivatives have been published (Hamann, 2003); Alvarez-Manzaneda et al., 2005, 2007).

As part of our research project on the study of the South China Sea marine organisms, a sample of the sponge Dysidea sp. was collected off the Lingshui Bay, Hainan Province, China, and was chemically investigated. Bispuupehenone, (I), was isolated and crystallized from the Et2O-soluble fraction of the acetone extract of the animal, and the structure of (I) was firstly elucidated by spectroscopic methods, NMR, UV and MS, and eventually confirmed through X-ray diffraction analysis. Herein, we report the X-ray structure of (I).

The projection of bispuupehenone is shown in Figure 2. In the structure, two puupehenone moieties are connected through two O atoms and a C—C bond between benzene rings, forming a benzopyran moiety at the midpoint of the axial symmetric molecule. Rings A and B of (I) are in chair conformations, while rings C and D adopt half-chair conformations. Moreover, the trans junction between rings A/B and the cis junction between rings B/C are in agreement with the structure reported previously.

Bispuupehenone was tested for the inhibitory activities against hPTP1B (human protein tyrosine phosphatase 1B), a key target for the treatment of Type-II diabetes and obesity, and showed excellent inhibitory effect with IC50 value of 0.98 mg ml-1. Other bioassays, such as antibacterial and anti-inflammatory, are currently ongoing.

Experimental

The specimens of sponge were collected from Lingshui Bay, Hainan Province, China, in July 2004, and identified as Dysidea sp. by Professor J.-H. Li of the Institute of Oceanology, Chinese Academy of Sciences. A voucher specimen (LS-210) is available for inspection at the Herbarium of Shanghai Institute of Materia Medica, CAS. The frozen animals (dry weight 96.3 g) were cut into small pieces and exhaustively extracted with acetone (3×3 L). The organic extract was evaporated to give a residue, which was partitioned between Et2O and H2O. The Et2O solution was concentrated under reduced pressure to give a dark brown residue (4.7 g), which was fractionated by gradient silica gel column chromatography [0–100% acetone in light petroleum ether (PE)], yielding seven fractions (A···G). The fraction C eluted by PE/Me2CO (95:5) was further purified on a second silica gel column chromatography eluting with PE—Et2O (90:10) to afford (I) (14.3 mg). Crystals suitable for X-ray analysis were obtained by slow evaporation from a chloroform solution.

Refinement

The non-H atoms were located in successive difference Fourier syntheses. The final refinements were performed by full-matrix least-squares methods with isotropic thermal parameters for all non-H atoms. Hydroxyl H atom H2 was found in a difference map and freely refined with an isotropic displacement parameter. Other H atoms were placed in calculated positions and included in the final refinement in the riding model approximation, with displacement parameters derived from the parent atoms to which they are bonded. In the absence of significant anomalous dispersion effects, 1571 measured Friedel pairs were merged and the absolute configuration was arbitrarily assigned.

Figures

Fig. 1.

Fig. 1.

The structures of bispuupehenone (I) and puupehenone (II).

Fig. 2.

Fig. 2.

The projection of (I) showing the atom-labeling scheme.

Crystal data

C42H54O6 Z = 4
Mr = 654.85 F000 = 1416
Tetragonal, P41212 Dx = 1.256 Mg m3
Hall symbol: P 4abw 2nw Mo Kα radiation λ = 0.71073 Å
a = 13.5981 (10) Å Cell parameters from 4034 reflections
b = 13.5981 (10) Å θ = 4.8–54.2º
c = 18.7260 (19) Å µ = 0.08 mm1
α = 90º T = 293 (2) K
β = 90º Prismatic, colourless
γ = 90º 0.39 × 0.24 × 0.14 mm
V = 3462.6 (5) Å3

Data collection

Bruker APEX CCD area-detector diffractometer 2219 independent reflections
Radiation source: fine-focus sealed tube 1644 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.110
T = 293(2) K θmax = 27.0º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −16→17
Tmin = 0.743, Tmax = 0.990 k = −17→17
20532 measured reflections l = −11→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113   w = 1/[σ2(Fo2) + (0.07P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max = 0.007
2219 reflections Δρmax = 0.23 e Å3
225 parameters Δρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.15743 (13) 0.55657 (12) 0.08619 (8) 0.0429 (5)
O2 0.12262 (16) 0.48461 (14) 0.33312 (11) 0.0530 (5)
O3 0.34879 (12) 0.77308 (13) 0.13171 (8) 0.0415 (4)
C1 0.1684 (2) 0.87117 (19) −0.00763 (14) 0.0499 (7)
H1A 0.1694 0.9034 0.0386 0.060*
H1B 0.2340 0.8757 −0.0277 0.060*
C2 0.0968 (3) 0.9254 (2) −0.05633 (14) 0.0637 (9)
H2A 0.0322 0.9261 −0.0345 0.076*
H2B 0.1183 0.9930 −0.0619 0.076*
C3 0.0904 (3) 0.8771 (2) −0.12908 (15) 0.0681 (9)
H3A 0.1538 0.8820 −0.1525 0.082*
H3B 0.0430 0.9126 −0.1580 0.082*
C4 0.0601 (3) 0.7683 (2) −0.12559 (14) 0.0573 (8)
C5 0.1302 (2) 0.71542 (19) −0.07258 (12) 0.0431 (6)
H5 0.1954 0.7217 −0.0944 0.052*
C6 0.1141 (2) 0.6044 (2) −0.06599 (13) 0.0474 (7)
H6A 0.0577 0.5915 −0.0356 0.057*
H6B 0.1010 0.5765 −0.1127 0.057*
C7 0.2055 (2) 0.5575 (2) −0.03409 (13) 0.0484 (7)
H7A 0.1950 0.4871 −0.0303 0.058*
H7B 0.2604 0.5679 −0.0664 0.058*
C8 0.2325 (2) 0.59716 (19) 0.03840 (13) 0.0411 (6)
C9 0.23190 (19) 0.71109 (17) 0.04069 (12) 0.0371 (6)
H9 0.2905 0.7323 0.0145 0.045*
C10 0.14213 (18) 0.76213 (18) 0.00287 (13) 0.0389 (6)
C11 0.0747 (3) 0.7242 (3) −0.20075 (15) 0.0850 (12)
H11A 0.0422 0.7649 −0.2354 0.127*
H11B 0.0472 0.6592 −0.2022 0.127*
H11C 0.1436 0.7211 −0.2115 0.127*
C12 −0.0502 (2) 0.7571 (3) −0.10853 (18) 0.0746 (10)
H12A −0.0662 0.7956 −0.0672 0.112*
H12B −0.0647 0.6892 −0.0993 0.112*
H12C −0.0884 0.7795 −0.1485 0.112*
C13 0.0492 (2) 0.7539 (2) 0.04922 (13) 0.0462 (6)
H13A 0.0646 0.7722 0.0975 0.069*
H13B 0.0257 0.6873 0.0483 0.069*
H13C −0.0006 0.7969 0.0308 0.069*
C14 0.24566 (18) 0.74743 (19) 0.11748 (12) 0.0365 (5)
H14 0.2065 0.8074 0.1231 0.044*
C15 0.3325 (2) 0.5555 (2) 0.06039 (15) 0.0539 (7)
H15A 0.3455 0.5721 0.1093 0.081*
H15B 0.3829 0.5829 0.0305 0.081*
H15C 0.3319 0.4852 0.0551 0.081*
C16 0.21009 (17) 0.67425 (18) 0.17229 (12) 0.0355 (6)
C17 0.22961 (17) 0.69613 (18) 0.24324 (13) 0.0351 (5)
C18 0.20089 (17) 0.63566 (18) 0.29797 (12) 0.0359 (5)
C19 0.15135 (18) 0.54863 (18) 0.28072 (13) 0.0384 (6)
C20 0.13528 (19) 0.52376 (18) 0.21062 (13) 0.0401 (6)
H20 0.1029 0.4655 0.1997 0.048*
C21 0.16728 (18) 0.58544 (18) 0.15546 (13) 0.0367 (6)
H2 0.149 (3) 0.513 (3) 0.3750 (19) 0.086 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0538 (11) 0.0380 (9) 0.0370 (9) −0.0081 (8) 0.0003 (8) −0.0055 (8)
O2 0.0695 (13) 0.0420 (10) 0.0474 (11) −0.0153 (10) 0.0097 (10) 0.0052 (9)
O3 0.0395 (9) 0.0490 (10) 0.0360 (9) −0.0103 (8) 0.0026 (8) −0.0008 (8)
C1 0.0642 (18) 0.0418 (14) 0.0436 (14) −0.0107 (13) −0.0004 (14) 0.0011 (13)
C2 0.087 (2) 0.0442 (16) 0.0597 (19) −0.0007 (17) −0.0084 (18) 0.0115 (14)
C3 0.092 (3) 0.0619 (19) 0.0507 (18) −0.0038 (18) −0.0139 (18) 0.0132 (16)
C4 0.072 (2) 0.0574 (18) 0.0421 (15) −0.0089 (15) −0.0117 (15) 0.0084 (15)
C5 0.0527 (15) 0.0435 (14) 0.0333 (13) −0.0078 (13) 0.0020 (12) −0.0012 (11)
C6 0.0624 (18) 0.0469 (15) 0.0329 (13) −0.0116 (14) −0.0030 (13) −0.0100 (12)
C7 0.0604 (18) 0.0436 (15) 0.0412 (14) 0.0014 (13) 0.0053 (14) −0.0076 (12)
C8 0.0461 (15) 0.0397 (13) 0.0373 (13) 0.0023 (12) 0.0052 (12) −0.0056 (12)
C9 0.0410 (13) 0.0376 (12) 0.0328 (13) −0.0041 (11) 0.0052 (11) −0.0029 (11)
C10 0.0441 (14) 0.0387 (13) 0.0339 (12) −0.0051 (11) 0.0019 (11) 0.0006 (11)
C11 0.134 (4) 0.081 (2) 0.0400 (18) −0.012 (3) −0.016 (2) 0.0019 (17)
C12 0.071 (2) 0.080 (2) 0.073 (2) −0.0043 (19) −0.0276 (18) 0.006 (2)
C13 0.0454 (15) 0.0527 (16) 0.0405 (14) 0.0016 (14) 0.0047 (12) −0.0006 (13)
C14 0.0366 (12) 0.0396 (13) 0.0332 (13) −0.0056 (11) −0.0004 (10) 0.0001 (11)
C15 0.0551 (18) 0.0540 (17) 0.0526 (16) 0.0122 (14) 0.0044 (14) −0.0041 (14)
C16 0.0325 (12) 0.0365 (13) 0.0375 (13) −0.0026 (10) 0.0022 (11) −0.0009 (11)
C17 0.0318 (12) 0.0374 (12) 0.0360 (13) −0.0021 (10) 0.0019 (11) −0.0025 (11)
C18 0.0353 (12) 0.0404 (13) 0.0321 (13) −0.0011 (11) 0.0022 (10) −0.0017 (11)
C19 0.0402 (14) 0.0343 (13) 0.0407 (13) −0.0035 (11) 0.0071 (11) 0.0036 (11)
C20 0.0432 (14) 0.0341 (12) 0.0430 (14) −0.0062 (11) 0.0003 (12) −0.0051 (11)
C21 0.0380 (13) 0.0375 (13) 0.0345 (13) −0.0014 (11) 0.0002 (11) −0.0047 (11)

Geometric parameters (Å, °)

O1—C21 1.362 (3) C8—C9 1.550 (3)
O1—C8 1.465 (3) C9—C14 1.532 (3)
O2—C19 1.369 (3) C9—C10 1.573 (3)
O2—H2 0.95 (4) C9—H9 0.9800
O3—C18i 1.380 (3) C10—C13 1.537 (3)
O3—C14 1.469 (3) C11—H11A 0.9600
C1—C2 1.524 (4) C11—H11B 0.9600
C1—C10 1.538 (3) C11—H11C 0.9600
C1—H1A 0.9700 C12—H12A 0.9600
C1—H1B 0.9700 C12—H12B 0.9600
C2—C3 1.515 (4) C12—H12C 0.9600
C2—H2A 0.9700 C13—H13A 0.9600
C2—H2B 0.9700 C13—H13B 0.9600
C3—C4 1.536 (5) C13—H13C 0.9600
C3—H3A 0.9700 C14—C16 1.509 (3)
C3—H3B 0.9700 C14—H14 0.9800
C4—C12 1.541 (5) C15—H15A 0.9600
C4—C11 1.543 (4) C15—H15B 0.9600
C4—C5 1.553 (4) C15—H15C 0.9600
C5—C6 1.530 (4) C16—C21 1.377 (3)
C5—C10 1.558 (3) C16—C17 1.387 (3)
C5—H5 0.9800 C17—C18 1.371 (3)
C6—C7 1.520 (4) C17—C17i 1.450 (5)
C6—H6A 0.9700 C18—O3i 1.380 (3)
C6—H6B 0.9700 C18—C19 1.399 (4)
C7—C8 1.506 (3) C19—C20 1.373 (3)
C7—H7A 0.9700 C20—C21 1.400 (3)
C7—H7B 0.9700 C20—H20 0.9300
C8—C15 1.530 (4)
C21—O1—C8 113.87 (18) C10—C9—H9 106.0
C19—O2—H2 103 (2) C13—C10—C1 109.5 (2)
C18i—O3—C14 112.36 (18) C13—C10—C5 113.4 (2)
C2—C1—C10 113.2 (2) C1—C10—C5 107.5 (2)
C2—C1—H1A 108.9 C13—C10—C9 110.58 (19)
C10—C1—H1A 108.9 C1—C10—C9 107.6 (2)
C2—C1—H1B 108.9 C5—C10—C9 108.0 (2)
C10—C1—H1B 108.9 C4—C11—H11A 109.5
H1A—C1—H1B 107.7 C4—C11—H11B 109.5
C3—C2—C1 111.4 (3) H11A—C11—H11B 109.5
C3—C2—H2A 109.3 C4—C11—H11C 109.5
C1—C2—H2A 109.3 H11A—C11—H11C 109.5
C3—C2—H2B 109.3 H11B—C11—H11C 109.5
C1—C2—H2B 109.3 C4—C12—H12A 109.5
H2A—C2—H2B 108.0 C4—C12—H12B 109.5
C2—C3—C4 113.2 (3) H12A—C12—H12B 109.5
C2—C3—H3A 108.9 C4—C12—H12C 109.5
C4—C3—H3A 108.9 H12A—C12—H12C 109.5
C2—C3—H3B 108.9 H12B—C12—H12C 109.5
C4—C3—H3B 108.9 C10—C13—H13A 109.5
H3A—C3—H3B 107.7 C10—C13—H13B 109.5
C3—C4—C12 111.4 (3) H13A—C13—H13B 109.5
C3—C4—C11 107.5 (3) C10—C13—H13C 109.5
C12—C4—C11 106.0 (3) H13A—C13—H13C 109.5
C3—C4—C5 108.0 (2) H13B—C13—H13C 109.5
C12—C4—C5 114.8 (2) O3—C14—C16 109.82 (18)
C11—C4—C5 108.9 (3) O3—C14—C9 111.31 (19)
C6—C5—C4 114.9 (2) C16—C14—C9 112.7 (2)
C6—C5—C10 110.1 (2) O3—C14—H14 107.6
C4—C5—C10 117.1 (2) C16—C14—H14 107.6
C6—C5—H5 104.4 C9—C14—H14 107.6
C4—C5—H5 104.4 C8—C15—H15A 109.5
C10—C5—H5 104.4 C8—C15—H15B 109.5
C7—C6—C5 109.2 (2) H15A—C15—H15B 109.5
C7—C6—H6A 109.8 C8—C15—H15C 109.5
C5—C6—H6A 109.8 H15A—C15—H15C 109.5
C7—C6—H6B 109.8 H15B—C15—H15C 109.5
C5—C6—H6B 109.8 C21—C16—C17 119.2 (2)
H6A—C6—H6B 108.3 C21—C16—C14 123.9 (2)
C8—C7—C6 113.7 (2) C17—C16—C14 116.7 (2)
C8—C7—H7A 108.8 C18—C17—C16 122.2 (2)
C6—C7—H7A 108.8 C18—C17—C17i 119.0 (3)
C8—C7—H7B 108.8 C16—C17—C17i 116.7 (3)
C6—C7—H7B 108.8 C17—C18—O3i 123.3 (2)
H7A—C7—H7B 107.7 C17—C18—C19 118.1 (2)
O1—C8—C7 104.3 (2) O3i—C18—C19 118.3 (2)
O1—C8—C15 108.4 (2) O2—C19—C20 118.9 (2)
C7—C8—C15 109.0 (2) O2—C19—C18 120.6 (2)
O1—C8—C9 110.86 (19) C20—C19—C18 120.4 (2)
C7—C8—C9 112.5 (2) C19—C20—C21 120.6 (2)
C15—C8—C9 111.6 (2) C19—C20—H20 119.7
C14—C9—C8 110.36 (19) C21—C20—H20 119.7
C14—C9—C10 112.0 (2) O1—C21—C16 120.8 (2)
C8—C9—C10 115.6 (2) O1—C21—C20 120.0 (2)
C14—C9—H9 106.0 C16—C21—C20 119.2 (2)
C8—C9—H9 106.0
C10—C1—C2—C3 −57.4 (3) C14—C9—C10—C1 67.9 (2)
C1—C2—C3—C4 57.2 (4) C8—C9—C10—C1 −164.5 (2)
C2—C3—C4—C12 74.3 (3) C14—C9—C10—C5 −176.30 (19)
C2—C3—C4—C11 −169.9 (3) C8—C9—C10—C5 −48.7 (3)
C2—C3—C4—C5 −52.6 (4) C18i—O3—C14—C16 −50.0 (2)
C3—C4—C5—C6 −176.6 (3) C18i—O3—C14—C9 −175.53 (19)
C12—C4—C5—C6 58.5 (4) C8—C9—C14—O3 97.3 (2)
C11—C4—C5—C6 −60.1 (3) C10—C9—C14—O3 −132.3 (2)
C3—C4—C5—C10 52.0 (3) C8—C9—C14—C16 −26.6 (3)
C12—C4—C5—C10 −73.0 (3) C10—C9—C14—C16 103.8 (2)
C11—C4—C5—C10 168.4 (2) O3—C14—C16—C21 −126.5 (2)
C4—C5—C6—C7 160.9 (2) C9—C14—C16—C21 −1.7 (3)
C10—C5—C6—C7 −64.4 (3) O3—C14—C16—C17 48.3 (3)
C5—C6—C7—C8 58.8 (3) C9—C14—C16—C17 173.0 (2)
C21—O1—C8—C7 −178.8 (2) C21—C16—C17—C18 −5.2 (4)
C21—O1—C8—C15 65.2 (3) C14—C16—C17—C18 179.8 (2)
C21—O1—C8—C9 −57.6 (3) C21—C16—C17—C17i 158.50 (17)
C6—C7—C8—O1 72.2 (3) C14—C16—C17—C17i −16.5 (2)
C6—C7—C8—C15 −172.2 (2) C16—C17—C18—O3i 174.0 (2)
C6—C7—C8—C9 −47.9 (3) C17i—C17—C18—O3i 10.7 (3)
O1—C8—C9—C14 55.9 (3) C16—C17—C18—C19 0.8 (4)
C7—C8—C9—C14 172.2 (2) C17i—C17—C18—C19 −162.49 (17)
C15—C8—C9—C14 −64.9 (3) C17—C18—C19—O2 178.8 (2)
O1—C8—C9—C10 −72.5 (3) O3i—C18—C19—O2 5.2 (3)
C7—C8—C9—C10 43.8 (3) C17—C18—C19—C20 2.1 (4)
C15—C8—C9—C10 166.6 (2) O3i—C18—C19—C20 −171.5 (2)
C2—C1—C10—C13 −70.9 (3) O2—C19—C20—C21 −177.3 (2)
C2—C1—C10—C5 52.7 (3) C18—C19—C20—C21 −0.6 (4)
C2—C1—C10—C9 168.9 (2) C8—O1—C21—C16 28.2 (3)
C6—C5—C10—C13 −64.4 (3) C8—O1—C21—C20 −150.7 (2)
C4—C5—C10—C13 69.2 (3) C17—C16—C21—O1 −172.3 (2)
C6—C5—C10—C1 174.4 (2) C14—C16—C21—O1 2.3 (4)
C4—C5—C10—C1 −52.0 (3) C17—C16—C21—C20 6.5 (4)
C6—C5—C10—C9 58.5 (3) C14—C16—C21—C20 −178.9 (2)
C4—C5—C10—C9 −167.9 (2) C19—C20—C21—O1 175.1 (2)
C14—C9—C10—C13 −51.7 (3) C19—C20—C21—C16 −3.7 (4)
C8—C9—C10—C13 75.9 (3)

Symmetry codes: (i) −y+1, −x+1, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3i 0.95 (4) 2.16 (4) 2.753 (3) 120 (3)

Symmetry codes: (i) −y+1, −x+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2164).

References

  1. Alvarez-Manzaneda, E. J., Chahboun, R., Barranco Pérez, I., Cabrera, E., Alvarez, E. & Alvarez-Manzaneda, R. (2005). Org. Lett.7, 1477–1480. [DOI] [PubMed]
  2. Alvarez-Manzaneda, E. J., Chahboun, R., Cabrera, E., Alvarez, E., Haidour, A., Ramos, J. M., Alvarez-Manzaneda, R., Hmamouchi, M. & Bouanou, H. (2007). J. Org. Chem.72, 3332–3339. [DOI] [PubMed]
  3. Amade, P., Chevelot, L., Perzanowski, H. P. & Scheuer, P. J. (1983). Helv. Chim. Acta, 66, 1672–1675.
  4. Barrero, A. F., Alvarez-Manzaneda, E. J., Herrador, M. M., Valdivia, M. V. & Chahboun, R. (1998). Tetrahedron, 39, 2425–2428.
  5. Barrero, A. F., Alvarez-Miranda, E. J., Chahboun, R., Cortés, M. & Armstrong, V. (1999). Tetrahedron, 55, 15181–15208.
  6. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Castro, M. E., González-Iriarte, M., Barrero, A. F., Salvador-Tormo, N., Muñoz-Chápuli, R., Medina, M. A. & Quesada, A. R. (2004). Int. J. Cancer, 20, 31–38. [DOI] [PubMed]
  8. Ciavatta, M. L., Lopez Gresa, M. P., Gavagnin, M., Romero, V., Melck, D., Manzo, E., Guo, Y.-W., van Soest, R. & Cimino, G. (2007). Tetrahedron, 63, 1380–1384.
  9. Hamann, M. T. (2003). Curr. Pharm. Des.9, 879–889. [DOI] [PubMed]
  10. Kohmoto, S., McConnell, O. J., Wright, A., Koehn, F., Thompson, W., Lui, M. & Snader, K. M. (1987). J. Nat. Prod.50, 336–336. [DOI] [PubMed]
  11. Longley, R. E., McConnell, O. J., Essich, E. & Harmody, D. (1993). J. Nat. Prod.56, 915–920. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Takamatsu, S., Hodges, T. W., Rajbhandari, I., Gerwick, W. H., Hamann, M. T. & Nagle, D. G. (2003). J. Nat. Prod.66, 605–608. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011987/bh2164sup1.cif

e-64-0o946-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011987/bh2164Isup2.hkl

e-64-0o946-Isup2.hkl (106.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES