Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):o917. doi: 10.1107/S1600536808011021

3,5-Dichloro­salicylaldehyde

Isha Azizul a, Seik Weng Ng a,*
PMCID: PMC2961183  PMID: 21202399

Abstract

The title compound (systematic name: 3,5-dichloro-2-hydroxy­benzaldehyde), C7H4Cl2O2, crystallizes as discrete mol­ecules, the conformation of which may be influenced by an intra­molecular hydr­oxy–carbonyl O—H⋯O hydrogen bond.

Related literature

For the crystal structure of 3′,5′-dichloro­acetophenone, see: Filarowski et al. (2004).graphic file with name e-64-0o917-scheme1.jpg

Experimental

Crystal data

  • C7H4Cl2O2

  • M r = 191.00

  • Monoclinic, Inline graphic

  • a = 8.2823 (2) Å

  • b = 13.7412 (3) Å

  • c = 7.0973 (2) Å

  • β = 115.185 (2)°

  • V = 730.95 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 100 (2) K

  • 0.25 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.701, T max = 0.960

  • 8436 measured reflections

  • 1672 independent reflections

  • 1303 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.101

  • S = 1.05

  • 1672 reflections

  • 104 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011021/lh2606sup1.cif

e-64-0o917-sup1.cif (12.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011021/lh2606Isup2.hkl

e-64-0o917-Isup2.hkl (82.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (1) 1.87 (2) 2.628 (3) 149 (3)

Acknowledgments

We thank the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The intramolecular hydrogen bonds in small molecules such as ortho-hydroxyacetopheonone and its derivatives has been extensively studied, both theoretically and crystallographically. Such compounds can exist in a keto-enol equilibrium. For 3',5'-dichloroacetophenone, geometry-optimization calculations suggest that the presence of two chlorine substituents raises the acidity of the hydroxyl proton and decreases the basicity of the carbonyl function. The O···O distance in the hydrogen bond is 2.567 (3) Å (Filarowski et al., 2004).

The hydrogen bond in the title molecule (I) is longer with an O···O distance of 2.628 (3) Å. 3,5-Dichlorosalicylaldehyde (I) exists as a monomeric compound (Fig. 1); the molecule is flat and all bond dimensions are normal.

Experimental

The compound was purchased from Aldrich Chemical Company; the chemical exists as colorless prismatic crystals. The bulk chemical has a yellow color.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The oxygen-bound H atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.

Fig. 1.

70% Probability thermal ellipsoid plot of 3,5-dichlorosalicylaldehyde. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C7H4Cl2O2 F(000) = 384
Mr = 191.00 Dx = 1.736 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3128 reflections
a = 8.2823 (2) Å θ = 3.0–28.2°
b = 13.7412 (3) Å µ = 0.82 mm1
c = 7.0973 (2) Å T = 100 K
β = 115.185 (2)° Block, colorless
V = 730.95 (3) Å3 0.25 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 1672 independent reflections
Radiation source: fine-focus sealed tube 1303 reflections with I > 2σ(I)
graphite Rint = 0.058
ω scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.701, Tmax = 0.960 k = −17→17
8436 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.8939P] where P = (Fo2 + 2Fc2)/3
1672 reflections (Δ/σ)max = 0.001
104 parameters Δρmax = 0.59 e Å3
1 restraint Δρmin = −0.49 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.17794 (9) 0.14230 (4) 0.48280 (10) 0.01972 (18)
Cl2 0.15345 (9) 0.53148 (4) 0.39904 (11) 0.02166 (19)
O1 0.5328 (3) 0.17615 (13) 0.8080 (3) 0.0200 (4)
H1 0.631 (3) 0.192 (3) 0.905 (4) 0.038 (10)*
O2 0.7916 (3) 0.28892 (14) 1.0580 (3) 0.0252 (4)
C1 0.4488 (3) 0.25960 (17) 0.7232 (4) 0.0155 (5)
C2 0.2766 (3) 0.25497 (17) 0.5629 (4) 0.0164 (5)
C3 0.1851 (4) 0.33804 (17) 0.4659 (4) 0.0168 (5)
H3 0.0680 0.3339 0.3572 0.020*
C4 0.2680 (4) 0.42815 (17) 0.5306 (4) 0.0177 (5)
C5 0.4355 (4) 0.43592 (17) 0.6906 (4) 0.0179 (5)
H5 0.4890 0.4980 0.7336 0.021*
C6 0.5266 (3) 0.35155 (17) 0.7897 (4) 0.0160 (5)
C7 0.7028 (4) 0.35892 (18) 0.9634 (4) 0.0206 (6)
H7 0.7517 0.4220 1.0058 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0225 (3) 0.0110 (3) 0.0228 (3) −0.0036 (2) 0.0068 (3) −0.0026 (2)
Cl2 0.0204 (3) 0.0122 (3) 0.0276 (4) 0.0029 (2) 0.0056 (3) 0.0051 (2)
O1 0.0193 (10) 0.0111 (8) 0.0243 (11) 0.0025 (7) 0.0042 (9) 0.0025 (7)
O2 0.0211 (10) 0.0197 (9) 0.0272 (11) 0.0004 (8) 0.0030 (9) 0.0033 (8)
C1 0.0182 (13) 0.0111 (10) 0.0180 (12) 0.0028 (9) 0.0083 (11) 0.0016 (9)
C2 0.0216 (13) 0.0106 (10) 0.0186 (12) −0.0017 (9) 0.0100 (11) −0.0016 (9)
C3 0.0163 (13) 0.0162 (12) 0.0172 (13) −0.0004 (9) 0.0063 (11) −0.0007 (9)
C4 0.0201 (14) 0.0114 (11) 0.0213 (13) 0.0038 (9) 0.0086 (12) 0.0032 (9)
C5 0.0202 (14) 0.0108 (11) 0.0228 (14) −0.0024 (9) 0.0093 (12) 0.0000 (9)
C6 0.0151 (13) 0.0123 (11) 0.0195 (13) −0.0004 (9) 0.0064 (11) 0.0003 (9)
C7 0.0212 (14) 0.0149 (12) 0.0229 (14) −0.0029 (10) 0.0068 (12) −0.0003 (10)

Geometric parameters (Å, °)

Cl1—C2 1.730 (2) C3—C4 1.395 (3)
Cl2—C4 1.742 (2) C3—H3 0.9500
O1—C1 1.343 (3) C4—C5 1.373 (4)
O1—H1 0.840 (10) C5—C6 1.399 (3)
O2—C7 1.223 (3) C5—H5 0.9500
C1—C2 1.397 (4) C6—C7 1.459 (4)
C1—C6 1.406 (3) C7—H7 0.9500
C2—C3 1.381 (3)
C1—O1—H1 107 (3) C5—C4—Cl2 120.53 (19)
O1—C1—C2 118.7 (2) C3—C4—Cl2 117.9 (2)
O1—C1—C6 122.7 (2) C4—C5—C6 119.4 (2)
C2—C1—C6 118.5 (2) C4—C5—H5 120.3
C3—C2—C1 121.5 (2) C6—C5—H5 120.3
C3—C2—Cl1 119.6 (2) C5—C6—C1 120.3 (2)
C1—C2—Cl1 118.96 (18) C5—C6—C7 119.9 (2)
C2—C3—C4 118.7 (2) C1—C6—C7 119.8 (2)
C2—C3—H3 120.6 O2—C7—C6 124.1 (2)
C4—C3—H3 120.6 O2—C7—H7 118.0
C5—C4—C3 121.6 (2) C6—C7—H7 118.0
O1—C1—C2—C3 −178.3 (2) Cl2—C4—C5—C6 −178.17 (19)
C6—C1—C2—C3 2.0 (4) C4—C5—C6—C1 1.3 (4)
O1—C1—C2—Cl1 0.8 (3) C4—C5—C6—C7 −178.4 (2)
C6—C1—C2—Cl1 −178.90 (18) O1—C1—C6—C5 177.7 (2)
C1—C2—C3—C4 0.1 (4) C2—C1—C6—C5 −2.7 (4)
Cl1—C2—C3—C4 −179.03 (19) O1—C1—C6—C7 −2.6 (4)
C2—C3—C4—C5 −1.5 (4) C2—C1—C6—C7 177.1 (2)
C2—C3—C4—Cl2 177.52 (18) C5—C6—C7—O2 −179.8 (3)
C3—C4—C5—C6 0.9 (4) C1—C6—C7—O2 0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.84 (1) 1.87 (2) 2.628 (3) 149 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2606).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Filarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct.700, 67–72.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011021/lh2606sup1.cif

e-64-0o917-sup1.cif (12.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011021/lh2606Isup2.hkl

e-64-0o917-Isup2.hkl (82.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES