Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 16;64(Pt 5):o859. doi: 10.1107/S1600536808009951

Methyl 3-oxo-2,3-dihydro-1,2-benzothia­zole-2-acetate 1,1-dioxide

Waseeq Ahmad Siddiqui a,*, Saeed Ahmad b, Hamid Latif Siddiqui c, Masood Parvez d, Rehana Rashid e
PMCID: PMC2961185  PMID: 21202346

Abstract

The title mol­ecule, C10H9NO5S, is composed of two essentially planar units with a dihedral angle of 89.16 (6)° between them. In the crystal structure, there are weak inter­molecular C—H⋯O inter­actions resulting in dimeric pairs of mol­ecules about inversion centres and chains of mol­ecules extended along the a and c axes, thus stabilizing the structure. In addition, benzothia­zole rings lying parallel to each other with centroid–centroid distances of 3.679 (2) and 3.999 (2) Å indicate the existence of π–π stacking inter­actions.

Related literature

For related literature, see: Kapui et al. (2003); Masashi et al. (1999); Manjarrez et al. (1996); Siddiqui, Ahmad, Khan, Siddiqui & Parvez (2007); Siddiqui, Ahmad, Khan, Siddiqui & Weaver (2007); Siddiqui, Ahmad, Siddiqui et al. (2007); Siddiqui et al. (2008); Xu et al. (2005, 2006).graphic file with name e-64-0o859-scheme1.jpg

Experimental

Crystal data

  • C10H9NO5S

  • M r = 255.24

  • Triclinic, Inline graphic

  • a = 7.765 (3) Å

  • b = 8.496 (3) Å

  • c = 8.776 (4) Å

  • α = 104.39 (2)°

  • β = 100.58 (2)°

  • γ = 94.30 (2)°

  • V = 546.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 (2) K

  • 0.16 × 0.10 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.953, T max = 0.976

  • 4654 measured reflections

  • 2468 independent reflections

  • 2040 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.111

  • S = 1.03

  • 2468 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009951/lh2607sup1.cif

e-64-0o859-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009951/lh2607Isup2.hkl

e-64-0o859-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.95 2.53 3.435 (3) 160
C4—H4⋯O4ii 0.95 2.54 3.209 (3) 128
C8—H8A⋯O2iii 0.99 2.49 3.435 (3) 159
C10—H10C⋯O1iv 0.98 2.47 3.431 (3) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Saccharin derivatives are considered to be the most potent orally active human leucocyte elastase (HLE) inhibitors for the treatment of chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), cystic fibrosis, asthma and other inflammatory diseases (Kapui et al., 2003). Various biologically important saccharin skeletons and their N-alkyl derivatives were efficiently prepared (Xu et al., 2006) by chromium oxide-catalyzed oxidation of N-alkyl(o-methyl)arenesulfonamides in acetonitrile besides the already developed methodology utilizing irradiation techniques for similar type of conversions (Masashi et al., 1999). In continuation to our research on benzene, 1,2-benzothiazine 1,1-dioxide and saccharin derivatives (Siddiqui et al., 2008; Siddiqui, Ahmad, Khan, Siddiqui & Weaver, 2007), we report herein the crystal structure of the title compound, (I).

The structure of (I) is composed of an essentially planar moiety, S1/N1/O1/C1—C7 with maximum deviations from the least-square planes being: O1 = -0.0540 (12) and N1 = 0.0540 (13) Å, and an approximately planar moiety C8—C10/O4/O5 with maximum deviation of 0.0766 (13) Å for C8. The two moieties are oriented with a dihedral angle of 89.16 (6)° between their least-squares planes. The structure is stabilized by four rather weak intermolecular interactions of the type C—H···O (Fig. 2 and Table 1). Of these interactions, C4—H4···O5 and C8—H8A···O2 H-bonds result in dimeric pairs of (I) while C10—H10···O1 and C2—H2···O5 result in chains of molecules extended along the a- and c-axes, respectively. The benzothiazole rings in (I) lie parallel to each other about the origin with the shortest distance between the centroids of the benzene rings of the adjacent molecules is 3.679 (2) Å which indicates the existence of π-π stacking interactions. The thiazoline rings located about inversion centers in the middle of the b axis (at 0, 1/2, 0) also show π-π interaction with centroids of these rings separated by 3.999 (2) Å (Fig. 3). The molecular dimensions in (I) are in agreement with the corresponding dimensions reported in similar structures (Xu et al., 2005; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007; Siddiqui, Ahmad, Siddiqui et al., 2007; Siddiqui et al., 2008).

Experimental

The compound (I) was prepared following the prcedures reported earlier (Manjarrez et al., 1996). Crystals suitable for X-ray crystallography were grown from a solution of CH3OH by slow evaporation at 313 K.

Refinement

H-atoms were included in the refinements at geometrically idealized positions with aryl, methylene and methyl C—H distances 0.95, 0.99 and 0.98 Å, respectively, and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant features.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.

Fig. 2.

Fig. 2.

Unit cell packing of (I) showing C—H···O interactions represented by dashed lines; H-atoms not involved in H-bonds have been omitted.

Fig. 3.

Fig. 3.

Unit cell packing of (I) showing π-π stacking interactions represented by dashed lines; H-atoms have been omitted for clarity.

Crystal data

C10H9NO5S Z = 2
Mr = 255.24 F000 = 264
Triclinic, P1 Dx = 1.550 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.765 (3) Å Cell parameters from 4654 reflections
b = 8.496 (3) Å θ = 3.9–27.4º
c = 8.776 (4) Å µ = 0.31 mm1
α = 104.39 (2)º T = 173 (2) K
β = 100.58 (2)º Block, colourless
γ = 94.30 (2)º 0.16 × 0.10 × 0.08 mm
V = 546.8 (4) Å3

Data collection

Nonius KappaCCD diffractometer 2468 independent reflections
Radiation source: fine-focus sealed tube 2040 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.024
T = 173(2) K θmax = 27.4º
ω and φ scans θmin = 3.9º
Absorption correction: multi-scan(SORTAV; Blessing, 1997) h = −10→9
Tmin = 0.953, Tmax = 0.976 k = −11→10
4654 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.111   w = 1/[σ2(Fo2) + (0.056P)2 + 0.29P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2468 reflections Δρmax = 0.46 e Å3
155 parameters Δρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.25284 (6) 0.37128 (6) 1.06522 (6) 0.02602 (16)
O1 −0.07412 (18) 0.18372 (19) 0.67891 (17) 0.0354 (3)
O2 0.40672 (17) 0.29152 (17) 1.08988 (17) 0.0320 (3)
O3 0.2727 (2) 0.54422 (17) 1.13620 (18) 0.0372 (4)
O4 0.3882 (2) 0.14876 (17) 0.70088 (18) 0.0369 (4)
O5 0.41016 (18) 0.33528 (17) 0.56027 (16) 0.0312 (3)
N1 0.1635 (2) 0.3311 (2) 0.87005 (18) 0.0275 (4)
C1 0.0687 (2) 0.2676 (2) 1.1032 (2) 0.0243 (4)
C2 0.0451 (3) 0.2516 (2) 1.2517 (2) 0.0303 (4)
H2 0.1321 0.2987 1.3471 0.036*
C3 −0.1118 (3) 0.1633 (3) 1.2543 (3) 0.0325 (4)
H3 −0.1321 0.1482 1.3535 0.039*
C4 −0.2397 (3) 0.0968 (2) 1.1148 (3) 0.0329 (5)
H4 −0.3467 0.0384 1.1202 0.040*
C5 −0.2128 (3) 0.1147 (2) 0.9669 (2) 0.0297 (4)
H5 −0.3005 0.0698 0.8716 0.036*
C6 −0.0558 (2) 0.1990 (2) 0.9619 (2) 0.0245 (4)
C7 −0.0003 (2) 0.2326 (2) 0.8179 (2) 0.0263 (4)
C8 0.2499 (3) 0.3960 (2) 0.7616 (2) 0.0292 (4)
H8A 0.3291 0.4972 0.8238 0.035*
H8B 0.1593 0.4256 0.6819 0.035*
C9 0.3566 (2) 0.2757 (2) 0.6733 (2) 0.0268 (4)
C10 0.5248 (3) 0.2391 (3) 0.4726 (3) 0.0435 (6)
H10A 0.5553 0.2910 0.3914 0.052*
H10B 0.4638 0.1284 0.4195 0.052*
H10C 0.6329 0.2329 0.5475 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0241 (3) 0.0292 (3) 0.0245 (3) 0.00447 (18) 0.00385 (18) 0.00737 (18)
O1 0.0311 (7) 0.0495 (9) 0.0236 (7) 0.0080 (6) 0.0024 (6) 0.0076 (6)
O2 0.0225 (7) 0.0398 (8) 0.0339 (8) 0.0068 (6) 0.0027 (6) 0.0117 (6)
O3 0.0426 (9) 0.0266 (7) 0.0379 (8) 0.0026 (6) 0.0035 (7) 0.0045 (6)
O4 0.0472 (9) 0.0316 (8) 0.0378 (8) 0.0101 (7) 0.0158 (7) 0.0136 (6)
O5 0.0308 (7) 0.0441 (8) 0.0252 (7) 0.0126 (6) 0.0102 (6) 0.0158 (6)
N1 0.0242 (8) 0.0376 (9) 0.0217 (8) 0.0022 (7) 0.0048 (6) 0.0102 (7)
C1 0.0226 (9) 0.0270 (9) 0.0251 (9) 0.0069 (7) 0.0061 (7) 0.0083 (7)
C2 0.0307 (10) 0.0375 (11) 0.0241 (10) 0.0094 (8) 0.0053 (8) 0.0095 (8)
C3 0.0377 (11) 0.0375 (11) 0.0309 (11) 0.0155 (9) 0.0161 (9) 0.0151 (8)
C4 0.0269 (10) 0.0328 (10) 0.0452 (12) 0.0065 (8) 0.0137 (9) 0.0164 (9)
C5 0.0245 (9) 0.0314 (10) 0.0328 (10) 0.0046 (8) 0.0035 (8) 0.0095 (8)
C6 0.0252 (9) 0.0248 (9) 0.0240 (9) 0.0086 (7) 0.0042 (7) 0.0066 (7)
C7 0.0261 (9) 0.0288 (9) 0.0237 (10) 0.0051 (7) 0.0073 (7) 0.0042 (7)
C8 0.0305 (10) 0.0329 (10) 0.0297 (10) 0.0075 (8) 0.0115 (8) 0.0135 (8)
C9 0.0230 (9) 0.0325 (10) 0.0243 (9) 0.0000 (7) 0.0032 (7) 0.0090 (8)
C10 0.0436 (13) 0.0656 (15) 0.0302 (11) 0.0250 (11) 0.0173 (10) 0.0169 (10)

Geometric parameters (Å, °)

S1—O2 1.4258 (15) C3—C4 1.389 (3)
S1—O3 1.4306 (15) C3—H3 0.9500
S1—N1 1.6640 (18) C4—C5 1.395 (3)
S1—C1 1.7504 (19) C4—H4 0.9500
O1—C7 1.202 (2) C5—C6 1.380 (3)
O4—C9 1.196 (2) C5—H5 0.9500
O5—C9 1.335 (2) C6—C7 1.492 (3)
O5—C10 1.449 (2) C8—C9 1.517 (3)
N1—C7 1.402 (3) C8—H8A 0.9900
N1—C8 1.449 (2) C8—H8B 0.9900
C1—C2 1.387 (3) C10—H10A 0.9800
C1—C6 1.388 (3) C10—H10B 0.9800
C2—C3 1.389 (3) C10—H10C 0.9800
C2—H2 0.9500
O2—S1—O3 116.71 (9) C6—C5—H5 120.7
O2—S1—N1 110.73 (9) C4—C5—H5 120.7
O3—S1—N1 109.35 (9) C5—C6—C1 119.81 (18)
O2—S1—C1 112.26 (9) C5—C6—C7 127.38 (17)
O3—S1—C1 112.83 (9) C1—C6—C7 112.78 (17)
N1—S1—C1 92.26 (9) O1—C7—N1 123.33 (18)
C9—O5—C10 115.33 (16) O1—C7—C6 128.71 (18)
C7—N1—C8 122.31 (16) N1—C7—C6 107.93 (16)
C7—N1—S1 116.00 (13) N1—C8—C9 112.82 (16)
C8—N1—S1 121.68 (13) N1—C8—H8A 109.0
C2—C1—C6 122.73 (18) C9—C8—H8A 109.0
C2—C1—S1 126.37 (15) N1—C8—H8B 109.0
C6—C1—S1 110.90 (14) C9—C8—H8B 109.0
C1—C2—C3 116.80 (19) H8A—C8—H8B 107.8
C1—C2—H2 121.6 O4—C9—O5 125.61 (18)
C3—C2—H2 121.6 O4—C9—C8 125.59 (18)
C2—C3—C4 121.34 (19) O5—C9—C8 108.80 (16)
C2—C3—H3 119.3 O5—C10—H10A 109.5
C4—C3—H3 119.3 O5—C10—H10B 109.5
C3—C4—C5 120.73 (19) H10A—C10—H10B 109.5
C3—C4—H4 119.6 O5—C10—H10C 109.5
C5—C4—H4 119.6 H10A—C10—H10C 109.5
C6—C5—C4 118.57 (18) H10B—C10—H10C 109.5
O2—S1—N1—C7 111.37 (15) C2—C1—C6—C5 1.8 (3)
O3—S1—N1—C7 −118.66 (15) S1—C1—C6—C5 −178.65 (14)
C1—S1—N1—C7 −3.48 (15) C2—C1—C6—C7 −179.84 (17)
O2—S1—N1—C8 −69.24 (17) S1—C1—C6—C7 −0.3 (2)
O3—S1—N1—C8 60.73 (17) C8—N1—C7—O1 6.2 (3)
C1—S1—N1—C8 175.91 (15) S1—N1—C7—O1 −174.37 (15)
O2—S1—C1—C2 68.07 (19) C8—N1—C7—C6 −175.64 (16)
O3—S1—C1—C2 −66.31 (19) S1—N1—C7—C6 3.7 (2)
N1—S1—C1—C2 −178.43 (18) C5—C6—C7—O1 −5.9 (3)
O2—S1—C1—C6 −111.44 (14) C1—C6—C7—O1 175.94 (19)
O3—S1—C1—C6 114.19 (14) C5—C6—C7—N1 176.14 (18)
N1—S1—C1—C6 2.07 (14) C1—C6—C7—N1 −2.0 (2)
C6—C1—C2—C3 −0.4 (3) C7—N1—C8—C9 −84.4 (2)
S1—C1—C2—C3 −179.86 (15) S1—N1—C8—C9 96.29 (18)
C1—C2—C3—C4 −1.0 (3) C10—O5—C9—O4 −3.8 (3)
C2—C3—C4—C5 1.0 (3) C10—O5—C9—C8 175.82 (16)
C3—C4—C5—C6 0.4 (3) N1—C8—C9—O4 −9.1 (3)
C4—C5—C6—C1 −1.8 (3) N1—C8—C9—O5 171.21 (15)
C4—C5—C6—C7 −179.84 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O5i 0.95 2.53 3.435 (3) 160
C4—H4···O4ii 0.95 2.54 3.209 (3) 128
C8—H8A···O2iii 0.99 2.49 3.435 (3) 159
C10—H10C···O1iv 0.98 2.47 3.431 (3) 167

Symmetry codes: (i) x, y, z+1; (ii) −x, −y, −z+2; (iii) −x+1, −y+1, −z+2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2607).

References

  1. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  2. Fan, H.-F. (1991). SAPI91 Rigaku Corporation, Tokyo, Japan.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  5. Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther.305, 1–9. [DOI] [PubMed]
  6. Manjarrez, N., Pérez, H. I., Solís, A. & Luna, H. (1996). Synth. Commun.26, 585–591.
  7. Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.
  11. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun.37, 767–773.
  12. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.
  13. Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [DOI] [PubMed]
  14. Xu, L., Shu, H., Liu, Y., Zhang, S. & Trudell, M. (2006). Tetrahedron, 62, 7902–7910.
  15. Xu, L.-Z., Si, G.-D., Li, Z.-F., Yang, S.-H. & Li, K. (2005). Acta Cryst. E61, o1329–o1330.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009951/lh2607sup1.cif

e-64-0o859-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009951/lh2607Isup2.hkl

e-64-0o859-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES