Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 10;64(Pt 5):o832. doi: 10.1107/S1600536808009501

N-[(2,4-Dimethyl­phen­yl)carbamothio­yl]-2-methyl­benzamide

B M Yamin a, S Yousuf b,*, M S M Yusof c, R H Jusoh c
PMCID: PMC2961187  PMID: 21202321

Abstract

The title compound, C17H18N2OS, adopts a transcis geometry of the thio­urea group which is stabilized by intra­molecular hydrogen bonds between the O atom of the carbonyl group and the H atom of the thio­amide group. A C—H⋯S intramolecular hydrogen bond is also present. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds to form centrosymmetric dimers.

Related literature

For the crystal structure of 1-(2,3-dimethyl­phen­yl)-3-(2-methyl­benzo­yl)thio­urea, which is isomeric with the title compound, see: Khawar Rauf et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o832-scheme1.jpg

Experimental

Crystal data

  • C17H18N2OS

  • M r = 298.39

  • Triclinic, Inline graphic

  • a = 6.2569 (15) Å

  • b = 9.862 (2) Å

  • c = 13.986 (3) Å

  • α = 69.461 (4)°

  • β = 86.199 (4)°

  • γ = 75.206 (4)°

  • V = 781.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 (2) K

  • 0.27 × 0.18 × 0.09 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.946, T max = 0.982

  • 7817 measured reflections

  • 2904 independent reflections

  • 2069 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.119

  • S = 1.02

  • 2904 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009501/at2557sup1.cif

e-64-0o832-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009501/at2557Isup2.hkl

e-64-0o832-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.03 2.706 135
C17—H17B⋯S1 0.96 2.80 3.496 130
N1—H1⋯S1i 0.86 2.57 3.372 155

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Ministry of Higher Education of Malaysia for Fundamental Research Grants OUP UKM-OUP-BIT-28/20076 and UMT-FRGS-59001, and Universiti Kebangsaan Malaysia and HEJ Research Institute of Chemistry, University of Karachi, for research facilities.

supplementary crystallographic information

Comment

The title compound, (I), is isomeric to the previously reported 1-(2,3-dimethylphenyl)-3-(2-methylbenzoyl)thiourea (II), (Khawar Rauf et al., 2007) with the difference that the 2,3-dimethylphenyl ring is replaced by 2,4-dimethylphenyl (Fig.1). The bond lengths and angles are in normal range (Allen et al., 1987) and in agreement with those in (II). The central thiourea moiety (S1/N1/N2/C9), 2-methylbenzoyl (C1—C8), and 2,3-dimethylphenyl (C10—C15) rings are each planar with a maximum deviation of 0.040 (2)Å for C8 atom from the least square plane. The dihedral angles between the thiourea moiety and the 2-methylbenzoyl and 2,3-dimethylphenyl rings are 52.96 (11) and 70.34 (12)°, respectively. The trans-cis geometry of the thiourea moiety is stabilized by N2—H2···O1 and C17—H17B···S1 intramolecular hydrogen bonds. In the crystal structure, the molecules are linked to form dimers by the N1—H1···S1 intermolecular hydrogen bond (symmtery codes as in Table 2) and arranged parallel to c axis (Fig.2).

Experimental

The mixture of 2-methylbenzoyl chloride (9.720 g, 0.025 mol) with the equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 2,3-dimethyl aniline (3.025 g, 0.025 mol) in 40 ml dry acetone was refluxed with stirring for 4 h. The solution was filtered and left to evaporate at room temperature. The colourless crystals obtained after a few days, was found suitable for X-ray investigations. The yield was 85% with melting point 413.2–415.7 K.

Refinement

H atoms on the C and N parent atoms were positioned geomatrically, with C—H = 0.96, 0.93 and N—H = 0.86Å

and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH and NH) and 1.5Ueq(CH3).

Figures

Fig. 1.

Fig. 1.

The molecular sStructure of (I) with displacement ellipsoids drawn at 50% probability level. The dashed lines indicates the intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown by dashed lines.

Crystal data

C17H18N2OS Z = 2
Mr = 298.39 F000 = 316
Triclinic, P1 Dx = 1.269 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.2569 (15) Å Cell parameters from 1377 reflections
b = 9.862 (2) Å θ = 1.5–25.5º
c = 13.986 (3) Å µ = 0.21 mm1
α = 69.461 (4)º T = 298 (2) K
β = 86.199 (4)º Slab, colourless
γ = 75.206 (4)º 0.27 × 0.18 × 0.09 mm
V = 781.1 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2904 independent reflections
Radiation source: fine-focus sealed tube 2069 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.034
Detector resolution: 83.66 pixels mm-1 θmax = 25.5º
T = 298(2) K θmin = 1.5º
ω scans h = −7→7
Absorption correction: multi-scan(SADABS; Bruker, 2000) k = −11→11
Tmin = 0.946, Tmax = 0.982 l = −16→16
7817 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.119   w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1084P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2904 reflections Δρmax = 0.23 e Å3
193 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.00124 (10) 0.51524 (6) 0.34145 (4) 0.0441 (2)
O1 0.2196 (3) 0.02671 (18) 0.54848 (13) 0.0630 (5)
N1 0.1412 (3) 0.27939 (19) 0.50519 (13) 0.0374 (4)
H1 0.1341 0.3473 0.5313 0.045*
N2 0.0595 (3) 0.22917 (19) 0.36460 (13) 0.0394 (5)
H2 0.0883 0.1375 0.4048 0.047*
C1 0.2131 (4) 0.0521 (3) 0.75752 (18) 0.0519 (6)
H1A 0.1042 0.0051 0.7537 0.062*
C2 0.2787 (5) 0.0473 (3) 0.85127 (19) 0.0644 (8)
H2A 0.2120 −0.0007 0.9105 0.077*
C3 0.4424 (5) 0.1138 (3) 0.8562 (2) 0.0639 (8)
H3 0.4864 0.1112 0.9192 0.077*
C4 0.5414 (4) 0.1835 (3) 0.77013 (19) 0.0541 (7)
H4 0.6543 0.2264 0.7754 0.065*
C5 0.4783 (4) 0.1923 (3) 0.67457 (17) 0.0430 (6)
C6 0.3089 (3) 0.1265 (2) 0.66943 (16) 0.0367 (5)
C7 0.5968 (5) 0.2679 (4) 0.5822 (2) 0.0696 (8)
H7A 0.5020 0.3625 0.5433 0.104*
H7B 0.6355 0.2060 0.5407 0.104*
H7C 0.7286 0.2835 0.6034 0.104*
C8 0.2225 (4) 0.1361 (2) 0.56942 (17) 0.0393 (5)
C9 0.0679 (3) 0.3321 (2) 0.40383 (15) 0.0334 (5)
C10 0.0056 (4) 0.2603 (2) 0.25979 (16) 0.0366 (5)
C11 0.1738 (4) 0.2193 (3) 0.19879 (18) 0.0473 (6)
H11 0.3167 0.1740 0.2259 0.057*
C12 0.1297 (4) 0.2456 (3) 0.09727 (19) 0.0538 (7)
H12 0.2440 0.2181 0.0565 0.065*
C13 −0.0810 (4) 0.3119 (3) 0.05573 (17) 0.0499 (6)
C14 −0.2460 (4) 0.3481 (3) 0.11976 (17) 0.0463 (6)
H14 −0.3895 0.3910 0.0929 0.056*
C15 −0.2098 (4) 0.3239 (2) 0.22153 (16) 0.0394 (5)
C16 −0.1300 (5) 0.3419 (3) −0.05520 (19) 0.0748 (9)
H16A −0.0953 0.4338 −0.0968 0.112*
H16B −0.2839 0.3494 −0.0643 0.112*
H16C −0.0420 0.2614 −0.0750 0.112*
C17 −0.3997 (4) 0.3598 (3) 0.28774 (19) 0.0564 (7)
H17A −0.5362 0.3917 0.2493 0.085*
H17B −0.3828 0.4383 0.3099 0.085*
H17C −0.4015 0.2723 0.3462 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0630 (4) 0.0333 (3) 0.0343 (3) −0.0086 (3) −0.0061 (3) −0.0108 (2)
O1 0.1010 (14) 0.0356 (9) 0.0529 (11) −0.0138 (9) −0.0262 (10) −0.0130 (8)
N1 0.0502 (11) 0.0303 (9) 0.0333 (10) −0.0070 (8) −0.0101 (8) −0.0128 (8)
N2 0.0524 (12) 0.0300 (9) 0.0347 (10) −0.0063 (8) −0.0104 (8) −0.0107 (8)
C1 0.0657 (16) 0.0445 (14) 0.0448 (15) −0.0180 (12) −0.0029 (12) −0.0108 (12)
C2 0.092 (2) 0.0591 (17) 0.0327 (14) −0.0153 (16) 0.0040 (14) −0.0072 (13)
C3 0.089 (2) 0.0587 (17) 0.0398 (16) −0.0019 (16) −0.0202 (15) −0.0193 (13)
C4 0.0576 (16) 0.0573 (16) 0.0483 (16) −0.0066 (13) −0.0184 (13) −0.0214 (13)
C5 0.0421 (13) 0.0453 (14) 0.0402 (14) −0.0053 (11) −0.0066 (11) −0.0157 (11)
C6 0.0424 (13) 0.0311 (11) 0.0339 (12) −0.0037 (10) −0.0052 (10) −0.0109 (10)
C7 0.0598 (17) 0.101 (2) 0.0598 (18) −0.0409 (16) 0.0074 (14) −0.0278 (17)
C8 0.0450 (13) 0.0363 (12) 0.0380 (13) −0.0111 (10) −0.0058 (10) −0.0127 (10)
C9 0.0319 (11) 0.0387 (12) 0.0313 (12) −0.0077 (9) −0.0019 (9) −0.0144 (10)
C10 0.0494 (14) 0.0326 (11) 0.0315 (12) −0.0110 (10) −0.0056 (10) −0.0135 (9)
C11 0.0478 (14) 0.0472 (14) 0.0487 (15) −0.0026 (11) −0.0052 (12) −0.0239 (12)
C12 0.0579 (17) 0.0569 (16) 0.0475 (15) −0.0036 (13) 0.0052 (13) −0.0274 (13)
C13 0.0694 (17) 0.0452 (14) 0.0338 (13) −0.0083 (12) −0.0056 (12) −0.0152 (11)
C14 0.0504 (14) 0.0455 (14) 0.0404 (14) −0.0049 (11) −0.0128 (11) −0.0143 (11)
C15 0.0428 (13) 0.0400 (12) 0.0361 (13) −0.0090 (10) −0.0031 (10) −0.0141 (10)
C16 0.101 (2) 0.080 (2) 0.0370 (15) −0.0053 (17) −0.0084 (15) −0.0226 (14)
C17 0.0470 (15) 0.0767 (19) 0.0493 (16) −0.0126 (13) −0.0008 (12) −0.0279 (14)

Geometric parameters (Å, °)

S1—C9 1.660 (2) C7—H7A 0.9600
O1—C8 1.218 (3) C7—H7B 0.9600
N1—C8 1.366 (3) C7—H7C 0.9600
N1—C9 1.392 (3) C10—C11 1.380 (3)
N1—H1 0.8600 C10—C15 1.387 (3)
N2—C9 1.325 (3) C11—C12 1.384 (3)
N2—C10 1.433 (3) C11—H11 0.9300
N2—H2 0.8600 C12—C13 1.378 (3)
C1—C6 1.381 (3) C12—H12 0.9300
C1—C2 1.381 (3) C13—C14 1.381 (3)
C1—H1A 0.9300 C13—C16 1.511 (3)
C2—C3 1.367 (4) C14—C15 1.383 (3)
C2—H2A 0.9300 C14—H14 0.9300
C3—C4 1.358 (4) C15—C17 1.505 (3)
C3—H3 0.9300 C16—H16A 0.9600
C4—C5 1.386 (3) C16—H16B 0.9600
C4—H4 0.9300 C16—H16C 0.9600
C5—C6 1.395 (3) C17—H17A 0.9600
C5—C7 1.501 (3) C17—H17B 0.9600
C6—C8 1.496 (3) C17—H17C 0.9600
C8—N1—C9 129.81 (17) N2—C9—N1 116.13 (18)
C8—N1—H1 115.1 N2—C9—S1 125.20 (16)
C9—N1—H1 115.1 N1—C9—S1 118.67 (15)
C9—N2—C10 124.43 (18) C11—C10—C15 120.8 (2)
C9—N2—H2 117.8 C11—C10—N2 117.8 (2)
C10—N2—H2 117.8 C15—C10—N2 121.3 (2)
C6—C1—C2 120.2 (2) C10—C11—C12 120.0 (2)
C6—C1—H1A 119.9 C10—C11—H11 120.0
C2—C1—H1A 119.9 C12—C11—H11 120.0
C3—C2—C1 119.4 (2) C13—C12—C11 121.0 (2)
C3—C2—H2A 120.3 C13—C12—H12 119.5
C1—C2—H2A 120.3 C11—C12—H12 119.5
C4—C3—C2 120.7 (2) C12—C13—C14 117.4 (2)
C4—C3—H3 119.7 C12—C13—C16 121.2 (2)
C2—C3—H3 119.7 C14—C13—C16 121.4 (2)
C3—C4—C5 121.6 (2) C13—C14—C15 123.6 (2)
C3—C4—H4 119.2 C13—C14—H14 118.2
C5—C4—H4 119.2 C15—C14—H14 118.2
C4—C5—C6 117.7 (2) C14—C15—C10 117.2 (2)
C4—C5—C7 119.4 (2) C14—C15—C17 120.6 (2)
C6—C5—C7 122.9 (2) C10—C15—C17 122.2 (2)
C1—C6—C5 120.4 (2) C13—C16—H16A 109.5
C1—C6—C8 118.0 (2) C13—C16—H16B 109.5
C5—C6—C8 121.57 (19) H16A—C16—H16B 109.5
C5—C7—H7A 109.5 C13—C16—H16C 109.5
C5—C7—H7B 109.5 H16A—C16—H16C 109.5
H7A—C7—H7B 109.5 H16B—C16—H16C 109.5
C5—C7—H7C 109.5 C15—C17—H17A 109.5
H7A—C7—H7C 109.5 C15—C17—H17B 109.5
H7B—C7—H7C 109.5 H17A—C17—H17B 109.5
O1—C8—N1 123.27 (19) C15—C17—H17C 109.5
O1—C8—C6 123.18 (19) H17A—C17—H17C 109.5
N1—C8—C6 113.52 (18) H17B—C17—H17C 109.5
C6—C1—C2—C3 −1.5 (4) C10—N2—C9—S1 4.5 (3)
C1—C2—C3—C4 −0.3 (4) C8—N1—C9—N2 5.5 (3)
C2—C3—C4—C5 1.2 (4) C8—N1—C9—S1 −173.80 (17)
C3—C4—C5—C6 −0.2 (3) C9—N2—C10—C11 108.4 (2)
C3—C4—C5—C7 −178.7 (3) C9—N2—C10—C15 −74.2 (3)
C2—C1—C6—C5 2.5 (3) C15—C10—C11—C12 1.9 (3)
C2—C1—C6—C8 −176.4 (2) N2—C10—C11—C12 179.4 (2)
C4—C5—C6—C1 −1.7 (3) C10—C11—C12—C13 −0.3 (4)
C7—C5—C6—C1 176.8 (2) C11—C12—C13—C14 −1.3 (4)
C4—C5—C6—C8 177.2 (2) C11—C12—C13—C16 179.6 (2)
C7—C5—C6—C8 −4.3 (3) C12—C13—C14—C15 1.3 (4)
C9—N1—C8—O1 −8.8 (4) C16—C13—C14—C15 −179.6 (2)
C9—N1—C8—C6 173.14 (19) C13—C14—C15—C10 0.3 (3)
C1—C6—C8—O1 −57.8 (3) C13—C14—C15—C17 −177.2 (2)
C5—C6—C8—O1 123.3 (3) C11—C10—C15—C14 −1.9 (3)
C1—C6—C8—N1 120.3 (2) N2—C10—C15—C14 −179.21 (19)
C5—C6—C8—N1 −58.6 (3) C11—C10—C15—C17 175.5 (2)
C10—N2—C9—N1 −174.81 (18) N2—C10—C15—C17 −1.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.86 2.03 2.706 135
C17—H17B···S1 0.96 2.80 3.496 130
N1—H1···S1i 0.86 2.57 3.372 155

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2557).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256–o1257.
  4. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009501/at2557sup1.cif

e-64-0o832-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009501/at2557Isup2.hkl

e-64-0o832-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES