Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 16;64(Pt 5):m675–m676. doi: 10.1107/S1600536808009872

Tetra­kis(μ3-2-{[1,1-bis­(hydroxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-6-methoxy­phenol­ato)tetra­nickel(II) tetra­hydrate

Yujing Guo a, Lianzhi Li a,*, Yan Liu a, Jianfang Dong a, Daqi Wang a
PMCID: PMC2961190  PMID: 21202214

Abstract

The title complex, [Ni4(C12H15NO4)4]·4H2O, has crystal­lographic fourfold inversion symmetry, with each NiII ion coordinated in a slightly distorted square-pyramidal coordination environment and forming an Ni4O4 cubane-like core. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect complex and water mol­ecules to form a three-dimensional network. The O atom of one of the unique hydroxy­methyl groups is disordered over two sites, with the ratio of occupancies being approximately 0.79:0.21.

Related literature

For related literature, see: Dong, Li, Xu & Wang (2007); Dong, Li, Xu, Cui & Wang (2007); Koikawa et al. (2005); Mishtu et al. (2002); Nihei et al. (2003).graphic file with name e-64-0m675-scheme1.jpg

Experimental

Crystal data

  • [Ni4(C12H15NO4)4]·4H2O

  • M r = 1319.90

  • Tetragonal, Inline graphic

  • a = 18.754 (2) Å

  • c = 15.4395 (15) Å

  • V = 5430.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 298 (2) K

  • 0.30 × 0.29 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.670, T max = 0.686

  • 11110 measured reflections

  • 2399 independent reflections

  • 1840 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.194

  • S = 1.08

  • 2399 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009872/lh2612sup1.cif

e-64-0m675-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009872/lh2612Isup2.hkl

e-64-0m675-Isup2.hkl (117.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—O1 1.912 (4)
Ni1—O3 1.941 (4)
Ni1—N1 1.949 (6)
Ni1—O3i 1.970 (4)
Ni1—O3ii 2.565 (5)
O1—Ni1—O3 172.2 (2)
O1—Ni1—N1 94.3 (2)
O3—Ni1—N1 84.1 (2)
O1—Ni1—O3i 94.57 (19)
O3—Ni1—O3i 88.47 (19)
N1—Ni1—O3i 166.1 (2)
O1—Ni1—O3ii 94.23 (17)
O3—Ni1—O3ii 79.80 (17)
N1—Ni1—O3ii 117.2 (2)
O3i—Ni1—O3ii 72.63 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N1 0.82 2.58 2.988 (9) 112
O4—H4⋯O6iii 0.82 1.94 2.714 (8) 157
O4′—H4′⋯O6iii 0.82 1.96 2.68 (3) 148
O6—H6A⋯O1iv 0.85 1.95 2.803 (7) 180
O6—H6B⋯O4v 0.85 2.04 2.892 (9) 180

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2004B02) for a research grant.

supplementary crystallographic information

Comment

The chemistry of transition metal ion complexes of hydroxy (aryl-OH and alkyl-OH) rich molecules containing imine/amine group is important in the biomimetic studies of metalloproteins (Mishtu et al., 2002). Polynuclear metal complexes with tridentate ligand containing hydroxyl groups as terminal coordinating atoms have been reported and have attracted much attention (Nihei et al., 2003).

A few structurally characterized multinuclear complexes containing Schiff base ligands has been reported( e.g. Dong, Li, Xu & Wang (2007); Dong, Li, Xu, Cui & Wang (2007); Nihei et al., 2003). Herein, we report the synthesis and crystal structure of a novel tetranickel(II) complex with a tridentate Schiff base ligand derived from the condensation of o-vanillin and trihydroxymethylaminomethane.

The title compound contains a tetranuclear cubane core based on an approximately cubic array of alternating nickel and oxygen atoms (Fig.1). Each NiII ion is in a distorted square-pyramidal coordination environment with one nitrogen and two oxygen atoms from one Schiff base ligand and two oxygen atoms from the symmetry related units of the cubane core. The Ni atom deviates from the basal plane (formed by O1, N1, O3 and O3i, symmetry code (i) y - 7/4, -x + 3/4, -z + 7/4) by 0.1299 (33) Å, with a significantly longer Ni—Oapical bond distance (Table 1). In the molecular structure, the Ni—Ni distances (3.472 (4) Å, 3.182 (3) Å) are longer than some reported values (Koikawa et al., 2005). In addition, there are four H2O solvent molecules, which are involved in intermolecular O-H···O hydrogen bonds (Fig. 2, Table 2) which stabilize the crystal atructure along with van der Waals forces.

Experimental

Trihydroxymethylaminomethane(1 mmol, 121.14 mg) was dissolved in hot methanol (10 ml) and added successively to a methanol solution(3 ml) of o-vanillin (1 mmol, 152.15 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution(2 ml) of nickel chlorate hexahydrate(1 mmol, 237.66 mg) was added dropwise and stirred for another 5 h. The solution was held at room temperature for ten days, whereupon green blocky crystals suitable for X-ray diffraction were obtained.

Refinement

Difference Fourier maps revealed that one of the hydroxymethyl group is distorted over two sites. The subsequent refinement of their occupancies gave the value of 0.791 (3) and 0.209 (3), respectively. All the H atoms were placed in geometrically calculated positions (C—H = 0.93 - 0.97 Å, O—H = 0.82 Å) and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The water solvent molecules are not shown. Open bonds indicate disordered atoms and only the assymetric unit is labelled.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines. The disorder is not shown.

Crystal data

[Ni4(C12H15NO4)4]·4H2O Z = 4
Mr = 1319.90 F000 = 2752
Tetragonal, I41/a Dx = 1.614 Mg m3
Hall symbol: -I 4ad Mo Kα radiation λ = 0.71073 Å
a = 18.754 (2) Å Cell parameters from 3768 reflections
b = 18.754 (2) Å θ = 2.2–25.2º
c = 15.4395 (15) Å µ = 1.45 mm1
α = 90º T = 298 (2) K
β = 90º Block, green
γ = 90º 0.30 × 0.29 × 0.28 mm
V = 5430.3 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2399 independent reflections
Radiation source: fine-focus sealed tube 1840 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.034
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −22→22
Tmin = 0.670, Tmax = 0.686 k = −22→15
11110 measured reflections l = −9→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.194   w = 1/[σ2(Fo2) + (0.0801P)2 + 60.7787P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
2399 reflections Δρmax = 1.23 e Å3
186 parameters Δρmin = −0.70 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.40964 (4) 0.72996 (4) 1.05945 (5) 0.0374 (3)
N1 0.3971 (4) 0.6819 (3) 0.9486 (4) 0.0575 (16)
O1 0.3327 (2) 0.7952 (2) 1.0412 (3) 0.0480 (11)
O2 0.2316 (3) 0.8868 (4) 1.0480 (5) 0.097 (2)
O3 0.4952 (2) 0.6720 (2) 1.0675 (3) 0.0435 (10)
O4 0.3704 (5) 0.5372 (4) 0.9346 (5) 0.079 (2) 0.791 (10)
H4 0.3533 0.5023 0.9103 0.119* 0.791 (10)
O4' 0.3587 (16) 0.5547 (15) 0.836 (2) 0.079 (2) 0.209 (10)
H4' 0.3562 0.5134 0.8190 0.119* 0.209 (10)
O5 0.4819 (5) 0.6865 (5) 0.7848 (5) 0.120 (3)
H5 0.4383 0.6853 0.7893 0.181*
O6 0.3380 (3) 0.6042 (3) 0.0986 (4) 0.0729 (16)
H6A 0.3733 0.5978 0.1322 0.088*
H6B 0.3472 0.5846 0.0503 0.088*
C1 0.3427 (4) 0.6889 (4) 0.9010 (5) 0.061 (2)
H1 0.3392 0.6586 0.8535 0.073*
C2 0.2852 (4) 0.7394 (4) 0.9132 (5) 0.0529 (18)
C3 0.2839 (3) 0.7900 (4) 0.9815 (4) 0.0476 (16)
C4 0.2269 (4) 0.8386 (5) 0.9823 (5) 0.067 (2)
C5 0.1712 (5) 0.8344 (6) 0.9218 (6) 0.078 (3)
H5A 0.1334 0.8664 0.9245 0.094*
C6 0.1727 (5) 0.7834 (6) 0.8595 (6) 0.078 (3)
H6 0.1354 0.7800 0.8201 0.094*
C7 0.2279 (4) 0.7377 (5) 0.8544 (6) 0.068 (2)
H7 0.2281 0.7038 0.8104 0.081*
C8 0.1829 (7) 0.9466 (7) 1.0493 (9) 0.130 (5)
H8A 0.1797 0.9668 0.9923 0.195*
H8B 0.2001 0.9820 1.0891 0.195*
H8C 0.1366 0.9306 1.0675 0.195*
C9 0.4572 (5) 0.6290 (5) 0.9262 (6) 0.075 (3)
C10 0.4932 (4) 0.6144 (4) 1.0099 (4) 0.0523 (17)
H10A 0.4691 0.5749 1.0380 0.063*
H10B 0.5418 0.5995 0.9981 0.063*
C11 0.4273 (5) 0.5654 (5) 0.8832 (6) 0.073 (2)
H11A 0.4096 0.5781 0.8262 0.088* 0.791 (10)
H11B 0.4642 0.5296 0.8762 0.088* 0.791 (10)
H11C 0.4635 0.5509 0.8420 0.088* 0.209 (10)
H11D 0.4276 0.5290 0.9279 0.088* 0.209 (10)
C12 0.5136 (5) 0.6631 (6) 0.8640 (6) 0.085 (3)
H12A 0.5359 0.7033 0.8927 0.101*
H12B 0.5504 0.6283 0.8514 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0427 (5) 0.0358 (5) 0.0337 (5) 0.0002 (3) −0.0072 (3) −0.0007 (3)
N1 0.080 (4) 0.046 (3) 0.046 (3) 0.015 (3) −0.022 (3) −0.009 (3)
O1 0.045 (3) 0.055 (3) 0.043 (2) 0.008 (2) −0.009 (2) −0.005 (2)
O2 0.070 (4) 0.125 (6) 0.095 (5) 0.048 (4) −0.010 (4) −0.019 (4)
O3 0.056 (3) 0.039 (2) 0.036 (2) 0.010 (2) −0.008 (2) −0.0013 (19)
O4 0.094 (6) 0.059 (4) 0.086 (5) 0.007 (4) −0.005 (5) −0.030 (4)
O4' 0.094 (6) 0.059 (4) 0.086 (5) 0.007 (4) −0.005 (5) −0.030 (4)
O5 0.111 (6) 0.189 (8) 0.061 (4) 0.038 (6) 0.005 (4) 0.011 (5)
O6 0.053 (3) 0.096 (4) 0.070 (4) −0.001 (3) 0.011 (3) −0.003 (3)
C1 0.079 (5) 0.056 (4) 0.048 (4) 0.006 (4) −0.022 (4) −0.007 (3)
C2 0.055 (4) 0.059 (4) 0.045 (4) −0.010 (3) −0.013 (3) 0.007 (3)
C3 0.039 (4) 0.059 (4) 0.044 (4) −0.001 (3) −0.002 (3) 0.014 (3)
C4 0.049 (4) 0.093 (6) 0.058 (5) 0.010 (4) −0.001 (4) 0.002 (5)
C5 0.050 (5) 0.110 (8) 0.075 (6) 0.014 (5) −0.004 (4) 0.010 (6)
C6 0.060 (5) 0.106 (7) 0.069 (6) −0.008 (5) −0.018 (4) 0.007 (5)
C7 0.064 (5) 0.081 (6) 0.058 (5) −0.011 (4) −0.025 (4) 0.005 (4)
C8 0.105 (9) 0.148 (12) 0.137 (12) 0.064 (9) −0.013 (8) −0.026 (9)
C9 0.088 (6) 0.076 (6) 0.061 (5) 0.035 (5) −0.005 (5) −0.016 (4)
C10 0.054 (4) 0.060 (4) 0.043 (4) 0.010 (3) −0.001 (3) −0.013 (3)
C11 0.081 (6) 0.076 (6) 0.061 (5) 0.016 (5) −0.007 (5) −0.031 (5)
C12 0.085 (7) 0.104 (8) 0.065 (6) 0.024 (6) 0.001 (5) −0.002 (5)

Geometric parameters (Å, °)

Ni1—O1 1.912 (4) C2—C7 1.408 (10)
Ni1—O3 1.941 (4) C2—C3 1.419 (10)
Ni1—N1 1.949 (6) C3—C4 1.405 (11)
Ni1—O3i 1.970 (4) C4—C5 1.403 (12)
Ni1—O3ii 2.565 (5) C5—C6 1.357 (13)
N1—C1 1.265 (9) C5—H5A 0.9300
N1—C9 1.541 (10) C6—C7 1.345 (13)
O1—C3 1.303 (8) C6—H6 0.9300
O2—C4 1.362 (11) C7—H7 0.9300
O2—C8 1.446 (12) C8—H8A 0.9600
O3—C10 1.400 (8) C8—H8B 0.9600
O3—Ni1iii 1.970 (4) C8—H8C 0.9600
O4—C11 1.430 (12) C9—C11 1.475 (13)
O4—H4 0.8200 C9—C10 1.484 (11)
O4—H11D 1.0883 C9—C12 1.565 (14)
O4'—C11 1.49 (3) C10—H10A 0.9700
O4'—H4' 0.8200 C10—H10B 0.9700
O5—C12 1.429 (12) C11—H11A 0.9700
O5—H5 0.8200 C11—H11B 0.9700
O6—H6A 0.8500 C11—H11C 0.9698
O6—H6B 0.8499 C11—H11D 0.9699
C1—C2 1.447 (11) C12—H12A 0.9700
C1—H1 0.9300 C12—H12B 0.9700
O1—Ni1—O3 172.2 (2) O2—C8—H8A 109.5
O1—Ni1—N1 94.3 (2) O2—C8—H8B 109.5
O3—Ni1—N1 84.1 (2) H8A—C8—H8B 109.5
O1—Ni1—O3i 94.57 (19) O2—C8—H8C 109.5
O3—Ni1—O3i 88.47 (19) H8A—C8—H8C 109.5
N1—Ni1—O3i 166.1 (2) H8B—C8—H8C 109.5
O1—Ni1—O3ii 94.23 (17) C11—C9—C10 114.6 (8)
O3—Ni1—O3ii 79.80 (17) C11—C9—N1 110.2 (8)
N1—Ni1—O3ii 117.2 (2) C10—C9—N1 104.9 (6)
O3i—Ni1—O3ii 72.63 (17) C11—C9—C12 108.1 (8)
C1—N1—C9 121.7 (6) C10—C9—C12 107.5 (8)
C1—N1—Ni1 124.1 (6) N1—C9—C12 111.6 (7)
C9—N1—Ni1 114.0 (5) O3—C10—C9 115.0 (6)
C3—O1—Ni1 125.9 (4) O3—C10—H10A 108.5
C4—O2—C8 119.0 (8) C9—C10—H10A 108.5
C10—O3—Ni1 111.7 (4) O3—C10—H10B 108.5
C10—O3—Ni1iii 121.9 (4) C9—C10—H10B 108.5
Ni1—O3—Ni1iii 108.9 (2) H10A—C10—H10B 107.5
C11—O4—H4 109.5 O4—C11—C9 109.4 (7)
H4—O4—H11D 103.2 O4—C11—O4' 65.0 (13)
C11—O4'—H4' 109.5 C9—C11—O4' 130.9 (13)
C12—O5—H5 109.5 O4—C11—H11A 109.8
H6A—O6—H6B 108.4 C9—C11—H11A 109.8
N1—C1—C2 126.4 (7) O4'—C11—H11A 45.3
N1—C1—H1 116.8 O4—C11—H11B 109.8
C2—C1—H1 116.8 C9—C11—H11B 109.8
C7—C2—C3 118.8 (7) O4'—C11—H11B 117.9
C7—C2—C1 118.0 (7) H11A—C11—H11B 108.2
C3—C2—C1 123.1 (6) O4—C11—H11C 141.6
O1—C3—C4 118.7 (7) C9—C11—H11C 104.8
O1—C3—C2 124.4 (6) O4'—C11—H11C 104.3
C4—C3—C2 116.9 (7) H11A—C11—H11C 73.3
O2—C4—C5 125.6 (8) O4—C11—H11D 49.5
O2—C4—C3 112.8 (7) C9—C11—H11D 104.3
C5—C4—C3 121.6 (9) O4'—C11—H11D 104.9
C6—C5—C4 119.7 (9) H11A—C11—H11D 145.1
C6—C5—H5A 120.1 H11B—C11—H11D 65.7
C4—C5—H5A 120.1 H11C—C11—H11D 105.4
C7—C6—C5 120.5 (8) O5—C12—C9 111.7 (8)
C7—C6—H6 119.8 O5—C12—H12A 109.3
C5—C6—H6 119.8 C9—C12—H12A 109.3
C6—C7—C2 122.3 (9) O5—C12—H12B 109.3
C6—C7—H7 118.9 C9—C12—H12B 109.3
C2—C7—H7 118.9 H12A—C12—H12B 107.9
C1—C2—C3—C4 176.2 (7)

Symmetry codes: (i) y−1/4, −x+5/4, −z+9/4; (ii) −x+1, −y+3/2, z; (iii) −y+5/4, x+1/4, −z+9/4.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···N1 0.82 2.58 2.988 (9) 112
O4—H4···O6iv 0.82 1.94 2.714 (8) 157
O4'—H4'···O6iv 0.82 1.96 2.68 (3) 148
O6—H6A···O1v 0.85 1.95 2.803 (7) 180
O6—H6B···O4vi 0.85 2.04 2.892 (9) 180

Symmetry codes: (iv) y−1/4, −x+3/4, z+3/4; (v) −y+5/4, x+1/4, −z+5/4; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2612).

References

  1. Dong, J.-F., Li, L.-Z., Xu, T., Cui, H. & Wang, D.-Q. (2007). Acta Cryst. E63, m1501–m1502.
  2. Dong, J.-F., Li, L.-Z., Xu, H.-Y. & Wang, D.-Q. (2007). Acta Cryst. E63, m2300.
  3. Koikawa, M., Ohba, M. & Tokii, T. (2005). Polyhedron, 24, 2257–2262.
  4. Mishtu, D., Chebrolu, P. R., Pauli, K. S. & Kari, R. (2002). Inorg. Chem. Commun.5, 380–383.
  5. Nihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359–2362.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009872/lh2612sup1.cif

e-64-0m675-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009872/lh2612Isup2.hkl

e-64-0m675-Isup2.hkl (117.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES