Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 16;64(Pt 5):o835–o836. doi: 10.1107/S1600536808009288

1-Methyl-3-phenyl­sulfonyl-2-piperidone

Julio Zukerman-Schpector a,*, Paulo R Olivato b, Carlos R Cerqueira Jr b, Elisângela Vinhato b, Edward R T Tiekink c
PMCID: PMC2961210  PMID: 21202324

Abstract

The piperidone ring in the title compound, C12H15NO3S, has a slightly distorted half-chair conformation with the methyl, carbonyl and phenyl­sulfonyl ring substituents occupying equatorial, equatorial and axial positions, respectively. Mol­ecules are connected into centrosymmetric dimers via C—H⋯O inter­actions and these associate into layers via C—H⋯O—S contacts. Further C—H⋯O inter­actions involving both the carbonyl and sulfonyl O atoms consolidate the crystal packing by providing connections between the layers.

Related literature

For related structures, see: Zukerman-Schpector et al. (1999, 2006). For related literature, see: Distefano et al. (1991); Olivato et al. (1992, 1997, 2003, 2004); Dal Colle et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Drabowicz et al. (1983); Zoretic & Soja (1976).graphic file with name e-64-0o835-scheme1.jpg

Experimental

Crystal data

  • C12H15NO3S

  • M r = 253.32

  • Monoclinic, Inline graphic

  • a = 9.0191 (16) Å

  • b = 10.4920 (18) Å

  • c = 13.446 (3) Å

  • β = 107.861 (3)°

  • V = 1211.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 98 (2) K

  • 0.25 × 0.18 × 0.10 mm

Data collection

  • Rigaku AFC12κ/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.945, T max = 0.974

  • 5193 measured reflections

  • 2729 independent reflections

  • 2549 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.118

  • S = 1.12

  • 2729 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009288/ng2443sup1.cif

e-64-0o835-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009288/ng2443Isup2.hkl

e-64-0o835-Isup2.hkl (134KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 1.00 2.29 3.272 (2) 168
C6—H6B⋯O2ii 0.98 2.55 3.424 (3) 148
C11—H11⋯O3iii 0.95 2.62 3.224 (3) 122
C4—H4A⋯O1iv 0.99 2.48 3.328 (2) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank FAPESP and CNPq for financial support. CRC and EV thank CNPq for doctoral fellowships; PRO and JZ-S thank CNPq for fellowships (Brazil). Support from UTSA, CNPq and FAPESP to allow JZ-S to spend a sabbatical at UTSA is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound (I), Fig. 1, was studied as a part of an on-going investigation of conformational and electronic aspects of different classes of β-keto-sulfones, i.e.α-phenylsulfonyl -acetones, -acetophenones and -cyclohexanones, utilizing spectroscopic, theoretical and X-ray diffraction methods (Dal Colle et al., 1995; Zukerman-Schpector et al., 1999; 2006).

The piperidone ring has a slightly distorted half-chair conformation with a tendency towards a half-boat conformation: the ring-puckering parameters are q2 = 0.340 (2) Å, q3 = 0.332 (2) Å, QT = 0.476 (2) °, φ2 = -145.0 (3)° (Cremer & Pople, 1975). The ring substituents, i.e. N-methyl, C-carbonyl and C-phenylsulfonyl, occupy equatorial, equatorial and axial positions, respectively.

The crystal packing is dominated by C—H···O interactions, Table 1. Centrosymmetrically related molecules of (I) are connected into dimeric aggregates via C2—H···O1 contacts and these are linked into layers stacked along (1 0 1) via C6—H···O2 contacts. Connections betweem layers are also of the type C—H···O and serve to consolidate the crystal packing.

Experimental

Initially, the 3-phenylsulfanyl-1-methyl-2-piperidone was obtained from the reaction of 1-methyl-2-piperidinone and diphenyl disulfide with LDA in THF as described in the literature (Zoretic and Soja, 1976). The product was oxidized with H2O2 and SeO2 (as catalyst) in methanol (Drabowicz et al. 1983) to give compound (I). After extraction with chloroform and subsequent evaporation, a crude solid was obtained. This product was subjected to flash chromatography with a solution of ethyl acetate and acetone in a 7:3 ratio. Suitable crystals were obtained by vapor diffusion from chloroform/n-hexane at 283 K.; m.p. 414–415 K. IR (cm-1): ν(C=O) 1652, ν(SO2)(as) 1307, ν(SO2)(s) 1148. NMR (CDCl3, p.p.m.): δ 1.79–2.74 (4H, m), 2.95 (3H, s), 3.30–3.48 (2H, m), 3.97 (1H, triplet, J = 6.1 Hz), 7.53–7.57 (2H, m, aryl-H), 7.62–7.67 (1H, m, aryl-H), 7.92–7.94 (2H, m, aryl-H). Analysis found: C 56.86, H 6.04, N 5.58; C12H15O3NS requires: C 56.89, H 5.97, N 5.53%.

Refinement

All H atoms were included in the riding-model approximation with C—H = 0.95 - 1.00 Å, and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom labelling and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing in (I) highlighting the C—H···O hydrogen bonding contacts (orange dashed lines) leading to the formation of dimeric aggregates and the overall layer arrangement.

Crystal data

C12H15NO3S F000 = 536
Mr = 253.32 Dx = 1.389 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71070 Å
Hall symbol: -P 2yn Cell parameters from 4417 reflections
a = 9.0191 (16) Å θ = 2.4–40.6º
b = 10.4920 (18) Å µ = 0.26 mm1
c = 13.446 (3) Å T = 98 (2) K
β = 107.861 (3)º Block, colourless
V = 1211.1 (4) Å3 0.25 × 0.18 × 0.10 mm
Z = 4

Data collection

Rigaku AFC12κ/SATURN724 diffractometer 2729 independent reflections
Radiation source: fine-focus sealed tube 2549 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.025
T = 98(2) K θmax = 27.5º
ω scans θmin = 2.5º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) h = −10→11
Tmin = 0.945, Tmax = 0.974 k = −13→11
5193 measured reflections l = −17→7

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.118   w = 1/[σ2(Fo2) + (0.0539P)2 + 0.7818P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2729 reflections Δρmax = 0.39 e Å3
154 parameters Δρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.76305 (5) 0.20597 (4) 0.49677 (3) 0.01768 (15)
O1 1.13033 (15) 0.14856 (13) 0.56636 (9) 0.0186 (3)
O2 0.79732 (18) 0.33520 (13) 0.53443 (11) 0.0265 (3)
O3 0.60745 (15) 0.17739 (15) 0.43018 (11) 0.0275 (3)
N1 1.11807 (17) 0.30781 (15) 0.45077 (11) 0.0170 (3)
C1 1.0585 (2) 0.20646 (17) 0.48622 (13) 0.0147 (3)
C2 0.8952 (2) 0.16205 (17) 0.42479 (13) 0.0153 (3)
H2 0.8969 0.0669 0.4210 0.018*
C3 0.8348 (2) 0.21313 (18) 0.31267 (14) 0.0196 (4)
H3A 0.8843 0.1657 0.2676 0.024*
H3B 0.7208 0.1998 0.2850 0.024*
C4 0.8711 (2) 0.35463 (19) 0.30992 (14) 0.0214 (4)
H4A 0.8313 0.3865 0.2372 0.026*
H4B 0.8188 0.4027 0.3530 0.026*
C5 1.0457 (2) 0.37553 (19) 0.35160 (14) 0.0208 (4)
H5A 1.0942 0.3460 0.2989 0.025*
H5B 1.0668 0.4679 0.3625 0.025*
C6 1.2777 (2) 0.3460 (2) 0.50751 (14) 0.0213 (4)
H6A 1.3156 0.2956 0.5717 0.032*
H6B 1.2794 0.4367 0.5254 0.032*
H6C 1.3448 0.3314 0.4635 0.032*
C7 0.8027 (2) 0.10460 (17) 0.60682 (13) 0.0166 (3)
C8 0.9117 (2) 0.14160 (19) 0.70016 (14) 0.0199 (4)
H8 0.9681 0.2189 0.7041 0.024*
C9 0.9368 (2) 0.0641 (2) 0.78751 (14) 0.0211 (4)
H9 1.0114 0.0879 0.8516 0.025*
C10 0.8528 (2) −0.04843 (19) 0.78116 (14) 0.0215 (4)
H10 0.8704 −0.1013 0.8411 0.026*
C11 0.7431 (2) −0.08410 (19) 0.68753 (15) 0.0209 (4)
H11 0.6856 −0.1607 0.6839 0.025*
C12 0.7177 (2) −0.00801 (18) 0.59943 (14) 0.0185 (4)
H12 0.6437 −0.0322 0.5352 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0168 (2) 0.0151 (3) 0.0225 (2) 0.00200 (16) 0.00796 (18) 0.00263 (16)
O1 0.0179 (6) 0.0205 (7) 0.0155 (6) 0.0007 (5) 0.0026 (5) 0.0026 (5)
O2 0.0382 (8) 0.0134 (7) 0.0353 (8) 0.0021 (6) 0.0223 (7) 0.0004 (6)
O3 0.0144 (6) 0.0339 (8) 0.0324 (7) 0.0022 (6) 0.0044 (6) 0.0120 (6)
N1 0.0153 (7) 0.0180 (8) 0.0159 (7) −0.0018 (6) 0.0023 (6) 0.0013 (6)
C1 0.0153 (8) 0.0149 (9) 0.0147 (7) −0.0002 (6) 0.0056 (6) −0.0023 (6)
C2 0.0153 (8) 0.0141 (8) 0.0163 (8) 0.0000 (6) 0.0046 (6) −0.0010 (6)
C3 0.0181 (9) 0.0224 (10) 0.0154 (8) 0.0001 (7) 0.0008 (7) −0.0005 (7)
C4 0.0218 (9) 0.0215 (9) 0.0178 (8) 0.0016 (7) 0.0015 (7) 0.0027 (7)
C5 0.0242 (9) 0.0193 (9) 0.0174 (8) −0.0015 (7) 0.0043 (7) 0.0044 (7)
C6 0.0187 (9) 0.0233 (10) 0.0205 (8) −0.0054 (7) 0.0039 (7) 0.0003 (7)
C7 0.0180 (8) 0.0145 (8) 0.0194 (8) 0.0015 (7) 0.0090 (7) 0.0004 (7)
C8 0.0192 (9) 0.0192 (9) 0.0232 (9) −0.0026 (7) 0.0096 (7) −0.0035 (7)
C9 0.0197 (9) 0.0254 (10) 0.0191 (8) −0.0010 (7) 0.0072 (7) −0.0037 (7)
C10 0.0230 (9) 0.0243 (10) 0.0205 (8) 0.0027 (8) 0.0113 (7) 0.0037 (7)
C11 0.0204 (9) 0.0180 (9) 0.0274 (9) −0.0019 (7) 0.0120 (7) 0.0002 (7)
C12 0.0173 (8) 0.0170 (9) 0.0214 (8) −0.0014 (7) 0.0061 (7) −0.0018 (7)

Geometric parameters (Å, °)

S1—O3 1.4457 (15) C5—H5A 0.9900
S1—O2 1.4472 (15) C5—H5B 0.9900
S1—C7 1.7674 (18) C6—H6A 0.9800
S1—C2 1.8101 (18) C6—H6B 0.9800
O1—C1 1.233 (2) C6—H6C 0.9800
N1—C1 1.343 (2) C7—C8 1.391 (3)
N1—C6 1.463 (2) C7—C12 1.395 (3)
N1—C5 1.475 (2) C8—C9 1.389 (3)
C1—C2 1.524 (2) C8—H8 0.9500
C2—C3 1.534 (2) C9—C10 1.391 (3)
C2—H2 1.0000 C9—H9 0.9500
C3—C4 1.523 (3) C10—C11 1.393 (3)
C3—H3A 0.9900 C10—H10 0.9500
C3—H3B 0.9900 C11—C12 1.388 (3)
C4—C5 1.517 (3) C11—H11 0.9500
C4—H4A 0.9900 C12—H12 0.9500
C4—H4B 0.9900
O3—S1—O2 118.26 (9) N1—C5—C4 112.68 (15)
O3—S1—C7 107.61 (9) N1—C5—H5A 109.1
O2—S1—C7 107.71 (9) C4—C5—H5A 109.1
O3—S1—C2 106.81 (9) N1—C5—H5B 109.1
O2—S1—C2 108.70 (8) C4—C5—H5B 109.1
C7—S1—C2 107.28 (8) H5A—C5—H5B 107.8
C1—N1—C6 117.93 (15) N1—C6—H6A 109.5
C1—N1—C5 126.04 (15) N1—C6—H6B 109.5
C6—N1—C5 115.53 (15) H6A—C6—H6B 109.5
O1—C1—N1 122.70 (16) N1—C6—H6C 109.5
O1—C1—C2 118.95 (16) H6A—C6—H6C 109.5
N1—C1—C2 118.35 (15) H6B—C6—H6C 109.5
C1—C2—C3 114.75 (15) C8—C7—C12 121.42 (17)
C1—C2—S1 108.53 (11) C8—C7—S1 119.54 (14)
C3—C2—S1 110.06 (12) C12—C7—S1 118.96 (14)
C1—C2—H2 107.8 C9—C8—C7 119.10 (18)
C3—C2—H2 107.8 C9—C8—H8 120.4
S1—C2—H2 107.8 C7—C8—H8 120.4
C4—C3—C2 110.50 (15) C8—C9—C10 120.03 (17)
C4—C3—H3A 109.6 C8—C9—H9 120.0
C2—C3—H3A 109.6 C10—C9—H9 120.0
C4—C3—H3B 109.6 C9—C10—C11 120.40 (17)
C2—C3—H3B 109.6 C9—C10—H10 119.8
H3A—C3—H3B 108.1 C11—C10—H10 119.8
C5—C4—C3 109.79 (16) C12—C11—C10 120.17 (18)
C5—C4—H4A 109.7 C12—C11—H11 119.9
C3—C4—H4A 109.7 C10—C11—H11 119.9
C5—C4—H4B 109.7 C11—C12—C7 118.87 (17)
C3—C4—H4B 109.7 C11—C12—H12 120.6
H4A—C4—H4B 108.2 C7—C12—H12 120.6
C6—N1—C1—O1 3.1 (3) C1—N1—C5—C4 21.7 (3)
C5—N1—C1—O1 174.61 (17) C6—N1—C5—C4 −166.58 (16)
C6—N1—C1—C2 −177.19 (15) C3—C4—C5—N1 −47.8 (2)
C5—N1—C1—C2 −5.7 (3) O3—S1—C7—C8 −154.80 (15)
O1—C1—C2—C3 −163.27 (15) O2—S1—C7—C8 −26.27 (17)
N1—C1—C2—C3 17.0 (2) C2—S1—C7—C8 90.58 (15)
O1—C1—C2—S1 73.16 (18) O3—S1—C7—C12 21.86 (17)
N1—C1—C2—S1 −106.55 (15) O2—S1—C7—C12 150.39 (14)
O3—S1—C2—C1 172.73 (12) C2—S1—C7—C12 −92.76 (15)
O2—S1—C2—C1 44.09 (14) C12—C7—C8—C9 0.5 (3)
C7—S1—C2—C1 −72.12 (14) S1—C7—C8—C9 177.05 (14)
O3—S1—C2—C3 46.40 (15) C7—C8—C9—C10 −0.5 (3)
O2—S1—C2—C3 −82.24 (14) C8—C9—C10—C11 0.0 (3)
C7—S1—C2—C3 161.55 (12) C9—C10—C11—C12 0.5 (3)
C1—C2—C3—C4 −44.1 (2) C10—C11—C12—C7 −0.5 (3)
S1—C2—C3—C4 78.63 (17) C8—C7—C12—C11 0.0 (3)
C2—C3—C4—C5 59.6 (2) S1—C7—C12—C11 −176.58 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 1.00 2.29 3.272 (2) 168
C6—H6B···O2ii 0.98 2.55 3.424 (3) 148
C11—H11···O3iii 0.95 2.62 3.224 (3) 122
C4—H4A···O1iv 0.99 2.48 3.328 (2) 144

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2443).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Dal Colle, M., Bertolasi, V., De Palo, M., Distefano, G., Jones, D., Modelli, A. & Olivato, P. R. (1995). J. Chem. Phys.99, 15011–15017.
  5. Distefano, G., Dal Colle, M., Bertolasi, V., Olivato, P. R., Bonfada, E. & Mondino, M. G. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1195–1199.
  6. Drabowicz, J., Lyzwa, P. & Mikolajczyk, M. (1983). Phosphorus Sulfur Silicon, 17, 169–172.
  7. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  8. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  9. Olivato, P. R., Bonfada, E. & Rittner, R. (1992). Magn. Reson. Chem.30, 81–84.
  10. Olivato, P. R., Guerrero, S. A. & Rittner, R. (1997). Phosphorus Sulfur Silicon, 130, 155–174.
  11. Olivato, P. R., Hui, M. L. T., Rodrigues, A., Ruiz Filho, R., Rittner, R., Zukerman-Schpector, J., Distefano, G. & Dal Colle, M. (2003). J. Mol. Struct.645, 259–271.
  12. Olivato, P. R., Reis, A. K. C. A., Ruiz Filho, R., Zukerman-Schpector, J. & Rittner, R. (2004). J. Mol. Struct. THEOCHEM, 677, 199–210.
  13. Rigaku (2005). CrystalClear Rigaku Americas Corporation, The Woodlands, Texas, USA.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Zoretic, P. A. & Soja, P. (1976). J. Org. Chem.41, 3587–3589.
  16. Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. (2006). Z. Kristallogr. New Cryst. Struct.221, 165–166.
  17. Zukerman-Schpector, J., Olivato, P. R., Bueno, E. & Guerrero, S. A. (1999). Z. Kristallogr. New Cryst. Struct.214, 563–564.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009288/ng2443sup1.cif

e-64-0o835-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009288/ng2443Isup2.hkl

e-64-0o835-Isup2.hkl (134KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES