Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 23;64(Pt 5):o891. doi: 10.1107/S1600536808010623

1,6,6-Trimethyl-1H-chromeno[6,7-d]thia­zol-2(6H)-one

Jian Tang a, Yang Wang a, Bei-Na Zhang a, Peng Xia a,*
PMCID: PMC2961216  PMID: 21202374

Abstract

The title compound, C13H13NO2S, was prepared by a thermocyclization reaction from 3-methyl-6-(2-methyl­but-3-yn-2-yl­oxy)benzo[d]thia­zol-2(3H)-one. In the crystal structure, the methyl­thia­zole unit is planar, while the pyran ring assumes a screw-boat conformation. Intra­molecular C—H⋯O hydrogen bonding helps to stabilize the molecular structure.

Related literature

For general background, see: Gunatilaka et al. (1994); Ucar et al. (1998). For details of the synthesis, see: Delhomel et al. (2001).graphic file with name e-64-0o891-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2S

  • M r = 247.30

  • Triclinic, Inline graphic

  • a = 7.376 (2) Å

  • b = 8.395 (2) Å

  • c = 10.536 (2) Å

  • α = 106.13 (2)°

  • β = 98.16 (2)°

  • γ = 94.08 (2)°

  • V = 616.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2765 measured reflections

  • 2207 independent reflections

  • 1387 reflections with I > 2σ(I)

  • R int = 0.023

  • 3 standard reflections frequency: 60 min intensity decay: 0.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.216

  • S = 1.05

  • 2207 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1984); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010623/xu2407sup1.cif

e-64-0o891-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010623/xu2407Isup2.hkl

e-64-0o891-Isup2.hkl (108.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.56 3.331 (5) 140

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

2,2-Dimethyl-2H-benzopyran fused thiazolone is a novel potential bioactive core (Gunatilaka et al. 1994; Ucar et al. 1998). As part of our research program on new antitumor and antiviral agents based on bioisosterism, we synthesized the title compound and report here its crystal structure (Fig. 1).

The compound is a three rings-fused heterocycle compound. The methyl thiazole moiety shows a planar structure. The pyran ring assumes a screw-boat conformation. The C6–C7 bond distance of 1.312 (5) Å indicates a typical C═C double bond. Intramolecular C—H···O hydrogen bonding helps to stabilize the crystal structure (Table 1 and Fig. 2).

Experimental

The title compound was synthesized by the thermo-cyclization reaction of 3-methyl-6-(2-methylbut-3-yn-2-yloxy)benzo[d]thiazol-2(3H)-one. A mixture of 6-hydroxy-3-methyl-2(3H)-benzothiazolone (508 mg, 2.6 mmol) (Delhomel et al. 2001), 3-methyl-3-chloro-but-1-yne (320 mg, 3.12 mmol) and K2CO3 (1.43 g, 10.4 mmol) was stirred in acetone (30 ml) for 5 h under reflux condition, then filtered and removed the solvent. To the residue was added N,N-diethylaniline (5 ml) and further refluxed for 2 h. The resulting solution was poured to ice water (100 ml) and extracted with acetyl acetate, and the organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was isolated by chromatography on silica gel column with petroleum ether/EtOAc (18/1) as eluent to afford the pure compound. The solid was collected and recrystallized from acetyl acetate to give colorless crystals which were available for the single-crystal X-ray diffraction analysis. Yield: 33.5%.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and refined in riding mode with Uiso(H) =1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of (I), viewed down the c axis, showing one demensional supra-molecular chain connected by C—H···Oi hydrogen bonding [symmetry code: (i) = x, y + 1, z + 1). H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C13H13NO2S Z = 2
Mr = 247.30 F000 = 260
Triclinic, P1 Dx = 1.333 Mg m3
Hall symbol: -P 1 Melting point = 376–378 K
a = 7.376 (2) Å Mo Kα radiation λ = 0.71073 Å
b = 8.395 (2) Å Cell parameters from 25 reflections
c = 10.536 (2) Å θ = 10.2–13.7º
α = 106.13 (2)º µ = 0.25 mm1
β = 98.16 (2)º T = 298 (2) K
γ = 94.08 (2)º Parallelepiped, colourless
V = 616.2 (3) Å3 0.20 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.023
Radiation source: fine-focus sealed tube θmax = 25.2º
Monochromator: graphite θmin = 2.0º
T = 298(2) K h = −1→8
ω/2θ scans k = −10→10
Absorption correction: none l = −12→12
2765 measured reflections 3 standard reflections
2207 independent reflections every 60 min
1387 reflections with I > 2σ(I) intensity decay: 0.5%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076 H-atom parameters constrained
wR(F2) = 0.216   w = 1/[σ2(Fo2) + (0.1546P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2207 reflections Δρmax = 0.91 e Å3
157 parameters Δρmin = −0.68 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. 1H NMR (CDCl3, 400 MHz): δ 6.87 (s, 1H, 9-H); 6.64 (s, 1H, 4-H); 6.35 (1H, d, J = 9.78 Hz, 8-H); 5.68 (d, 1H, J = 9.78 Hz, 7-H); 3.40 (s, 3H, 1-CH3); 1.43 (s, 6H, 6-CH3). MS: m/z (%) 247 (M+, 22.17).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.72819 (14) 0.52182 (13) −0.25523 (9) 0.0529 (4)
N1 0.7791 (4) 0.3420 (4) −0.0937 (3) 0.0438 (7)
O1 0.8000 (4) 0.2061 (4) −0.3119 (3) 0.0670 (9)
O2 0.6410 (4) 0.9748 (3) 0.1700 (2) 0.0456 (7)
C1 0.7748 (5) 0.3288 (5) −0.2252 (4) 0.0510 (10)
C2 0.8103 (5) 0.2021 (5) −0.0421 (4) 0.0572 (11)
H2A 0.8403 0.1115 −0.1114 0.086*
H2B 0.7008 0.1671 −0.0128 0.086*
H2C 0.9105 0.2348 0.0321 0.086*
C3 0.7480 (4) 0.4981 (4) −0.0139 (3) 0.0383 (8)
C4 0.7478 (4) 0.5454 (4) 0.1217 (4) 0.0410 (8)
H4 0.7695 0.4696 0.1703 0.049*
C5 0.7150 (4) 0.7070 (4) 0.1869 (3) 0.0384 (8)
C6 0.7087 (5) 0.7649 (5) 0.3289 (4) 0.0471 (9)
H6 0.7087 0.6891 0.3786 0.056*
C7 0.7028 (5) 0.9237 (5) 0.3877 (4) 0.0509 (10)
H7 0.6938 0.9579 0.4782 0.061*
C8 0.7103 (5) 1.0517 (4) 0.3131 (3) 0.0454 (9)
C9 0.9067 (6) 1.1285 (5) 0.3310 (4) 0.0629 (12)
H9A 0.9809 1.0437 0.2938 0.094*
H9B 0.9534 1.1774 0.4248 0.094*
H9C 0.9108 1.2132 0.2860 0.094*
C10 0.5804 (6) 1.1829 (6) 0.3549 (4) 0.0661 (13)
H10A 0.5912 1.2639 0.3068 0.099*
H10B 0.6126 1.2374 0.4494 0.099*
H10C 0.4558 1.1301 0.3349 0.099*
C11 0.6830 (4) 0.8184 (4) 0.1118 (3) 0.0376 (8)
C12 0.6816 (5) 0.7719 (4) −0.0248 (3) 0.0403 (8)
H12 0.6586 0.8470 −0.0739 0.048*
C13 0.7152 (5) 0.6107 (4) −0.0871 (3) 0.0407 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0508 (6) 0.0578 (7) 0.0427 (6) 0.0037 (4) 0.0053 (4) 0.0046 (4)
N1 0.0257 (14) 0.0416 (17) 0.0569 (18) 0.0002 (12) 0.0024 (12) 0.0056 (14)
O1 0.0605 (19) 0.0622 (19) 0.0608 (18) 0.0140 (15) 0.0033 (14) −0.0090 (15)
O2 0.0475 (15) 0.0445 (14) 0.0390 (13) 0.0094 (11) −0.0031 (10) 0.0073 (11)
C1 0.0264 (18) 0.058 (2) 0.052 (2) −0.0016 (16) −0.0012 (15) −0.0037 (18)
C2 0.032 (2) 0.050 (2) 0.082 (3) 0.0036 (17) 0.0020 (19) 0.012 (2)
C3 0.0212 (15) 0.0409 (19) 0.0482 (19) −0.0024 (13) 0.0028 (13) 0.0083 (16)
C4 0.0258 (17) 0.046 (2) 0.050 (2) −0.0022 (14) −0.0010 (14) 0.0166 (17)
C5 0.0239 (16) 0.048 (2) 0.0385 (18) −0.0033 (14) −0.0017 (13) 0.0108 (15)
C6 0.042 (2) 0.054 (2) 0.045 (2) 0.0060 (16) 0.0023 (16) 0.0151 (17)
C7 0.047 (2) 0.065 (3) 0.0359 (18) 0.0069 (18) −0.0001 (16) 0.0098 (18)
C8 0.041 (2) 0.049 (2) 0.0383 (19) 0.0072 (16) −0.0015 (15) 0.0032 (16)
C9 0.046 (2) 0.066 (3) 0.067 (3) −0.006 (2) −0.005 (2) 0.013 (2)
C10 0.068 (3) 0.072 (3) 0.049 (2) 0.029 (2) 0.000 (2) 0.003 (2)
C11 0.0227 (16) 0.0403 (19) 0.0435 (18) −0.0010 (13) −0.0011 (13) 0.0065 (15)
C12 0.0338 (18) 0.044 (2) 0.0393 (18) −0.0031 (14) −0.0026 (14) 0.0121 (15)
C13 0.0298 (17) 0.044 (2) 0.0401 (18) −0.0064 (14) −0.0014 (13) 0.0060 (15)

Geometric parameters (Å, °)

S1—C13 1.740 (4) C5—C6 1.447 (5)
S1—C1 1.783 (4) C6—C7 1.312 (5)
N1—C1 1.354 (5) C6—H6 0.9300
N1—C3 1.401 (4) C7—C8 1.500 (5)
N1—C2 1.444 (5) C7—H7 0.9300
O1—C1 1.218 (4) C8—C9 1.507 (5)
O2—C11 1.364 (4) C8—C10 1.525 (5)
O2—C8 1.464 (4) C9—H9A 0.9599
C2—H2A 0.9599 C9—H9B 0.9599
C2—H2B 0.9599 C9—H9C 0.9599
C2—H2C 0.9599 C10—H10A 0.9599
C3—C4 1.373 (5) C10—H10B 0.9599
C3—C13 1.389 (5) C10—H10C 0.9599
C4—C5 1.395 (5) C11—C12 1.381 (5)
C4—H4 0.9300 C12—C13 1.388 (5)
C5—C11 1.395 (5) C12—H12 0.9300
C13—S1—C1 91.10 (17) C8—C7—H7 119.1
C1—N1—C3 115.4 (3) O2—C8—C7 110.5 (3)
C1—N1—C2 121.4 (3) O2—C8—C9 109.2 (3)
C3—N1—C2 123.2 (3) C7—C8—C9 109.5 (3)
C11—O2—C8 118.1 (3) O2—C8—C10 103.6 (3)
O1—C1—N1 126.6 (4) C7—C8—C10 111.9 (3)
O1—C1—S1 123.7 (3) C9—C8—C10 112.1 (3)
N1—C1—S1 109.8 (3) C8—C9—H9A 109.5
N1—C2—H2A 109.5 C8—C9—H9B 109.5
N1—C2—H2B 109.5 H9A—C9—H9B 109.5
H2A—C2—H2B 109.5 C8—C9—H9C 109.5
N1—C2—H2C 109.5 H9A—C9—H9C 109.5
H2A—C2—H2C 109.5 H9B—C9—H9C 109.5
H2B—C2—H2C 109.5 C8—C10—H10A 109.5
C4—C3—C13 120.2 (3) C8—C10—H10B 109.5
C4—C3—N1 127.2 (3) H10A—C10—H10B 109.5
C13—C3—N1 112.6 (3) C8—C10—H10C 109.5
C3—C4—C5 120.2 (3) H10A—C10—H10C 109.5
C3—C4—H4 119.9 H10B—C10—H10C 109.5
C5—C4—H4 119.9 O2—C11—C12 117.5 (3)
C11—C5—C4 118.8 (3) O2—C11—C5 120.8 (3)
C11—C5—C6 117.9 (3) C12—C11—C5 121.6 (3)
C4—C5—C6 123.4 (3) C11—C12—C13 118.4 (3)
C7—C6—C5 120.3 (4) C11—C12—H12 120.8
C7—C6—H6 119.8 C13—C12—H12 120.8
C5—C6—H6 119.8 C12—C13—C3 120.8 (3)
C6—C7—C8 121.8 (3) C12—C13—S1 128.0 (3)
C6—C7—H7 119.1 C3—C13—S1 111.2 (3)
C3—N1—C1—O1 179.1 (3) C6—C7—C8—O2 25.8 (5)
C2—N1—C1—O1 −2.0 (5) C6—C7—C8—C9 −94.5 (4)
C3—N1—C1—S1 −0.2 (3) C6—C7—C8—C10 140.6 (4)
C2—N1—C1—S1 178.6 (2) C8—O2—C11—C12 −155.9 (3)
C13—S1—C1—O1 −179.8 (3) C8—O2—C11—C5 27.9 (4)
C13—S1—C1—N1 −0.4 (2) C4—C5—C11—O2 176.6 (3)
C1—N1—C3—C4 −178.9 (3) C6—C5—C11—O2 −2.2 (5)
C2—N1—C3—C4 2.2 (5) C4—C5—C11—C12 0.5 (5)
C1—N1—C3—C13 1.0 (4) C6—C5—C11—C12 −178.2 (3)
C2—N1—C3—C13 −177.9 (3) O2—C11—C12—C13 −176.9 (3)
C13—C3—C4—C5 −0.2 (5) C5—C11—C12—C13 −0.8 (5)
N1—C3—C4—C5 179.7 (3) C11—C12—C13—C3 0.5 (5)
C3—C4—C5—C11 −0.1 (5) C11—C12—C13—S1 −177.9 (3)
C3—C4—C5—C6 178.6 (3) C4—C3—C13—C12 0.0 (5)
C11—C5—C6—C7 −10.8 (5) N1—C3—C13—C12 −180.0 (3)
C4—C5—C6—C7 170.5 (3) C4—C3—C13—S1 178.7 (2)
C5—C6—C7—C8 −2.6 (5) N1—C3—C13—S1 −1.3 (3)
C11—O2—C8—C7 −37.9 (4) C1—S1—C13—C12 179.5 (3)
C11—O2—C8—C9 82.5 (4) C1—S1—C13—C3 1.0 (2)
C11—O2—C8—C10 −157.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1i 0.93 2.56 3.331 (5) 140

Symmetry codes: (i) x, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2407).

References

  1. Delhomel, J. F., Yous, S., Depreux, P. & Lesieur, D. (2001). J. Heterocycl. Chem.38, 633–639.
  2. Enraf–Nonius (1984). CAD-4 Software Enraf-Nonius, Delft, The Netherlands.
  3. Gunatilaka, L., Kingston, D., Wijeratne, K., Bandara, R., Hofmann, G. & Johnson, R. (1994). J. Nat. Prod.57, 518–520. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Ucar, H., Van derpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem.41, 1138–1145. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010623/xu2407sup1.cif

e-64-0o891-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010623/xu2407Isup2.hkl

e-64-0o891-Isup2.hkl (108.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES