Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 30;64(Pt 5):o949. doi: 10.1107/S1600536808012099

3-Chloro-N-(3-chloro­phen­yl)benzamide

B Thimme Gowda a,*, Sabine Foro b, B P Sowmya a, Hartmut Fuess b
PMCID: PMC2961234  PMID: 21202429

Abstract

In the crystal structure of the title compound, C13H9Cl2NO, the N—H and C=O bonds are anti to each other in the two independent mol­ecules. In one mol­ecule, the N—H bond is syn to the meta-chloro group of the attached ring; it is anti in the other mol­ecule. This relationship is also observed between the C=O bond and the meta-chloro substituent of its attached ring. The amide –NHCO– group makes dihedral angles of 31.5 (4) and 34.7 (3)° with the aniline rings; it makes dihedral angles of 37.4 (3) and 37.2 (3)° with the benzoyl rings. The two rings are nearly coplanar, with dihedral angles of 9.1 (2) and 7.3 (3)° in the two independent mol­ecules. Adjacent mol­ecules are linked into infinite chains through N—H⋯O hydrogen bonds.

Related literature

For background literature, see: Gowda et al. (2003, 2007, 2008).graphic file with name e-64-0o949-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO

  • M r = 266.11

  • Monoclinic, Inline graphic

  • a = 8.577 (1) Å

  • b = 13.551 (1) Å

  • c = 10.357 (1) Å

  • β = 93.04 (1)°

  • V = 1202.1 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.70 mm−1

  • T = 296 (2) K

  • 0.60 × 0.28 × 0.23 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.265, T max = 0.341

  • 3088 measured reflections

  • 2249 independent reflections

  • 2165 reflections with I > 2˘I)

  • R int = 0.022

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.131

  • S = 1.10

  • 2249 reflections

  • 308 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983), no Friedel pairs

  • Flack parameter: 0.07 (2)

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012099/ng2449sup1.cif

e-64-0o949-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012099/ng2449Isup2.hkl

e-64-0o949-Isup2.hkl (110.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.86 2.05 2.877 (4) 162
N2—H2n⋯O1 0.86 2.06 2.884 (5) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the structures of N-aromatic amides,in the present work, the structure of 3-Chloro-N-(3-chlorophenyl)- benzamide(N3CP3CBA) has been determined(Gowda et al., 2003; 2007, 2008). In the structure of N3CP3CBA (Fig. 1),the conformations of the N—H and C=O bonds are anti to each other. The asymmetric unit of the structure contains two molecules. In one of the molecules, the conformation of the N—H bond is syn to the meta-chloro group in the aniline ring and anti to each other in the other molecule. Similar conformations were observed between the C=O bond and meta-chloro substituent in the benzoyl ring. This is in contrast to the single molecule observed in the asymmetric unit of 2-chloro-N-(2-Chlorophenyl)-benzamide (N2CP2CBA) and syn conformation of the N—H bond to the ortho-chloro substituent in the aniline ring and the C=O bond to the ortho-chloro substituent in the benzoyl ring (Gowda et al., 2007). The bond parameters in N3CP3CBA are similar to those in N-(3-chlorophenyl)-benzamide, N2CP2CBA and other benzanilides (Gowda et al., 2003; 2008). The amide group,-NHCO– makes the dihedral angles of 31.5 (4), 37.4 (3)° (molecule 1) and 34.7 (3), 37.2 (3)° (molecule 2) with the aniline and benzoyl rings, respectively, while those between the benzoyl and aniline rings are 9.1 (2)° and 7.3 (3)° in the molecules 1 and 2, respectively. The packing diagram of N3CP3CBA molecules showing the hydrogen bonds N1—H1N···O2 and N2—H2N···O1 (Table 1) involved in the formation of molecular chains is given in Fig. 2.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines..

Crystal data

C13H9Cl2NO F000 = 544
Mr = 266.11 Dx = 1.470 Mg m3
Monoclinic, P21 Cu Kα radiation λ = 1.54180 Å
Hall symbol: P 2yb Cell parameters from 25 reflections
a = 8.577 (1) Å θ = 6.5–27.0º
b = 13.551 (1) Å µ = 4.70 mm1
c = 10.357 (1) Å T = 296 (2) K
β = 93.04 (1)º Thick needle, colourless
V = 1202.1 (2) Å3 0.60 × 0.28 × 0.23 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.022
Radiation source: medium-focus sealed tube θmax = 67.0º
Monochromator: graphite θmin = 4.3º
T = 296(2) K h = −10→3
ω–2θ scans k = −16→0
Absorption correction: ψ scan(North et al., 1968) l = −12→12
Tmin = 0.265, Tmax = 0.341 3 standard reflections
3088 measured reflections every 120 min
2249 independent reflections intensity decay: none
2165 reflections with I > 2˘I)

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046   w = 1/[σ2(Fo2) + (0.0835P)2 + 0.4755P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131 (Δ/σ)max = 0.010
S = 1.10 Δρmax = 0.37 e Å3
2249 reflections Δρmin = −0.49 e Å3
308 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0062 (9)
Primary atom site location: structure-invariant direct methods Absolute structure: No Flack (1983), no Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.07 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.32030 (17) −0.00289 (12) −0.13075 (14) 0.0740 (5)
Cl2 1.14912 (18) 0.14458 (13) 0.63527 (15) 0.0799 (5)
O1 0.5608 (3) 0.1667 (2) 0.2587 (3) 0.0503 (8)
N1 0.7425 (4) 0.0481 (3) 0.2308 (4) 0.0460 (8)
H1N 0.8369 0.0308 0.2520 0.055*
C1 0.6552 (5) −0.0173 (3) 0.1482 (4) 0.0431 (10)
C2 0.5418 (5) 0.0182 (4) 0.0581 (4) 0.0456 (10)
H2 0.5206 0.0853 0.0511 0.055*
C3 0.4622 (5) −0.0494 (4) −0.0200 (4) 0.0445 (10)
C4 0.4926 (6) −0.1489 (4) −0.0152 (5) 0.0515 (11)
H4 0.4385 −0.1926 −0.0703 0.062*
C5 0.6063 (6) −0.1817 (4) 0.0742 (4) 0.0535 (11)
H5 0.6279 −0.2489 0.0807 0.064*
C6 0.6879 (5) −0.1163 (4) 0.1537 (4) 0.0488 (10)
H6 0.7660 −0.1394 0.2117 0.059*
C7 0.6948 (4) 0.1331 (3) 0.2792 (4) 0.0422 (9)
C8 0.8119 (4) 0.1892 (4) 0.3622 (4) 0.0393 (9)
C9 0.9189 (5) 0.1425 (4) 0.4483 (4) 0.0441 (9)
H9 0.9228 0.0741 0.4541 0.053*
C10 1.0191 (5) 0.2006 (4) 0.5251 (4) 0.0459 (10)
C11 1.0193 (6) 0.3013 (4) 0.5145 (5) 0.0485 (10)
H11 1.0898 0.3389 0.5649 0.058*
C12 0.9142 (5) 0.3464 (4) 0.4286 (5) 0.0496 (11)
H12 0.9139 0.4148 0.4208 0.060*
C13 0.8099 (5) 0.2910 (4) 0.3546 (4) 0.0456 (10)
H13 0.7371 0.3222 0.2987 0.055*
Cl3 0.1457 (2) 0.46405 (11) 0.18206 (16) 0.0753 (4)
Cl4 0.39972 (18) −0.34554 (10) 0.31885 (16) 0.0731 (4)
O2 0.0590 (3) −0.0229 (2) 0.2416 (3) 0.0517 (8)
N2 0.2432 (4) 0.0962 (3) 0.2377 (4) 0.0485 (9)
H2N 0.3378 0.1108 0.2621 0.058*
C14 0.1548 (5) 0.1709 (3) 0.1702 (4) 0.0428 (10)
C15 0.1861 (5) 0.2671 (4) 0.2042 (4) 0.0465 (10)
H15 0.2607 0.2819 0.2697 0.056*
C16 0.1049 (6) 0.3412 (4) 0.1395 (5) 0.0502 (11)
C17 −0.0064 (6) 0.3217 (4) 0.0413 (5) 0.0576 (12)
H17 −0.0604 0.3727 −0.0011 0.069*
C18 −0.0353 (6) 0.2251 (4) 0.0079 (5) 0.0604 (13)
H18 −0.1089 0.2106 −0.0585 0.072*
C19 0.0435 (6) 0.1493 (4) 0.0719 (4) 0.0532 (10)
H19 0.0222 0.0841 0.0493 0.064*
C20 0.1947 (5) 0.0069 (3) 0.2667 (4) 0.0433 (9)
C21 0.3143 (5) −0.0594 (3) 0.3333 (4) 0.0425 (9)
C22 0.3057 (5) −0.1578 (4) 0.3017 (4) 0.0425 (10)
H22 0.2313 −0.1802 0.2400 0.051*
C23 0.4090 (5) −0.2227 (3) 0.3627 (4) 0.0464 (10)
C24 0.5166 (5) −0.1926 (4) 0.4561 (5) 0.0518 (11)
H24 0.5846 −0.2378 0.4966 0.062*
C25 0.5229 (6) −0.0953 (4) 0.4891 (5) 0.0560 (12)
H25 0.5951 −0.0742 0.5535 0.067*
C26 0.4227 (5) −0.0268 (4) 0.4277 (4) 0.0477 (10)
H26 0.4286 0.0397 0.4498 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0702 (8) 0.0747 (9) 0.0728 (8) −0.0055 (7) −0.0370 (6) 0.0012 (7)
Cl2 0.0704 (8) 0.0792 (10) 0.0852 (10) −0.0037 (8) −0.0431 (7) 0.0120 (8)
O1 0.0270 (13) 0.052 (2) 0.0705 (19) 0.0027 (12) −0.0092 (12) −0.0101 (15)
N1 0.0294 (16) 0.051 (2) 0.056 (2) 0.0007 (15) −0.0091 (14) −0.0052 (18)
C1 0.0343 (19) 0.048 (3) 0.046 (2) −0.0029 (18) 0.0001 (16) −0.0051 (19)
C2 0.042 (2) 0.045 (2) 0.049 (2) −0.0022 (18) −0.0042 (17) −0.0010 (19)
C3 0.034 (2) 0.056 (3) 0.042 (2) −0.0049 (19) −0.0059 (17) −0.004 (2)
C4 0.047 (2) 0.059 (3) 0.048 (2) −0.011 (2) −0.0056 (19) −0.009 (2)
C5 0.060 (3) 0.046 (3) 0.055 (3) 0.003 (2) 0.003 (2) −0.006 (2)
C6 0.042 (2) 0.061 (3) 0.042 (2) 0.000 (2) −0.0042 (17) −0.001 (2)
C7 0.0293 (18) 0.050 (3) 0.047 (2) −0.0013 (18) −0.0030 (15) 0.0009 (19)
C8 0.0307 (18) 0.048 (2) 0.0391 (19) −0.0065 (17) −0.0021 (15) −0.0006 (17)
C9 0.041 (2) 0.042 (2) 0.048 (2) −0.0057 (19) −0.0043 (17) 0.0012 (19)
C10 0.037 (2) 0.057 (3) 0.043 (2) 0.0004 (19) −0.0072 (16) 0.002 (2)
C11 0.047 (2) 0.052 (3) 0.047 (2) −0.010 (2) −0.0028 (18) −0.011 (2)
C12 0.049 (3) 0.041 (2) 0.058 (3) −0.0035 (19) 0.003 (2) −0.006 (2)
C13 0.039 (2) 0.049 (3) 0.049 (2) 0.0023 (18) 0.0013 (17) 0.002 (2)
Cl3 0.0863 (10) 0.0465 (7) 0.0935 (10) 0.0010 (7) 0.0074 (8) 0.0058 (7)
Cl4 0.0804 (8) 0.0452 (7) 0.0932 (10) 0.0119 (6) 0.0009 (7) −0.0068 (7)
O2 0.0252 (13) 0.0485 (18) 0.080 (2) −0.0024 (13) −0.0067 (12) 0.0044 (16)
N2 0.0358 (19) 0.047 (2) 0.062 (2) 0.0023 (16) −0.0041 (16) 0.0028 (19)
C14 0.0340 (19) 0.049 (3) 0.046 (2) 0.0101 (17) 0.0044 (16) 0.0074 (19)
C15 0.040 (2) 0.049 (3) 0.051 (2) 0.0023 (19) 0.0038 (18) 0.0041 (19)
C16 0.049 (2) 0.044 (3) 0.059 (3) 0.0066 (19) 0.009 (2) 0.005 (2)
C17 0.051 (3) 0.062 (3) 0.059 (3) 0.015 (2) −0.004 (2) 0.015 (2)
C18 0.053 (3) 0.066 (3) 0.060 (3) 0.007 (2) −0.015 (2) 0.008 (3)
C19 0.060 (3) 0.049 (2) 0.049 (2) 0.004 (2) −0.0058 (19) 0.002 (2)
C20 0.038 (2) 0.044 (2) 0.048 (2) 0.0064 (18) −0.0026 (16) −0.0033 (19)
C21 0.039 (2) 0.045 (2) 0.043 (2) 0.0084 (18) 0.0011 (16) 0.0008 (18)
C22 0.0335 (19) 0.052 (3) 0.041 (2) 0.0070 (18) −0.0013 (16) −0.0019 (18)
C23 0.046 (2) 0.042 (2) 0.051 (2) 0.0043 (19) 0.0058 (18) 0.0039 (19)
C24 0.044 (2) 0.051 (3) 0.060 (3) 0.012 (2) −0.005 (2) 0.012 (2)
C25 0.047 (3) 0.066 (3) 0.054 (2) −0.004 (2) −0.013 (2) 0.004 (2)
C26 0.050 (2) 0.040 (2) 0.052 (2) 0.002 (2) −0.0029 (18) 0.000 (2)

Geometric parameters (Å, °)

Cl1—C3 1.745 (4) Cl3—C16 1.753 (5)
Cl2—C10 1.729 (4) Cl4—C23 1.726 (5)
O1—C7 1.244 (5) O2—C20 1.246 (5)
N1—C7 1.330 (6) N2—C20 1.319 (6)
N1—C1 1.418 (5) N2—C14 1.425 (5)
N1—H1N 0.8600 N2—H2N 0.8600
C1—C6 1.370 (7) C14—C15 1.373 (7)
C1—C2 1.397 (6) C14—C19 1.390 (6)
C2—C3 1.379 (6) C15—C16 1.376 (7)
C2—H2 0.9300 C15—H15 0.9300
C3—C4 1.373 (7) C16—C17 1.383 (7)
C4—C5 1.383 (7) C17—C18 1.373 (8)
C4—H4 0.9300 C17—H17 0.9300
C5—C6 1.376 (7) C18—C19 1.380 (7)
C5—H5 0.9300 C18—H18 0.9300
C6—H6 0.9300 C19—H19 0.9300
C7—C8 1.493 (6) C20—C21 1.503 (6)
C8—C13 1.382 (6) C21—C22 1.374 (6)
C8—C9 1.397 (6) C21—C26 1.386 (6)
C9—C10 1.385 (6) C22—C23 1.378 (6)
C9—H9 0.9300 C22—H22 0.9300
C10—C11 1.369 (7) C23—C24 1.363 (7)
C11—C12 1.375 (7) C24—C25 1.364 (8)
C11—H11 0.9300 C24—H24 0.9300
C12—C13 1.372 (6) C25—C26 1.395 (7)
C12—H12 0.9300 C25—H25 0.9300
C13—H13 0.9300 C26—H26 0.9300
C7—N1—C1 127.3 (4) C20—N2—C14 126.6 (4)
C7—N1—H1N 116.3 C20—N2—H2N 116.7
C1—N1—H1N 116.3 C14—N2—H2N 116.7
C6—C1—C2 119.9 (4) C15—C14—C19 120.3 (4)
C6—C1—N1 119.1 (4) C15—C14—N2 117.2 (4)
C2—C1—N1 121.0 (4) C19—C14—N2 122.5 (4)
C3—C2—C1 117.9 (4) C14—C15—C16 118.8 (4)
C3—C2—H2 121.0 C14—C15—H15 120.6
C1—C2—H2 121.0 C16—C15—H15 120.6
C4—C3—C2 122.9 (5) C15—C16—C17 122.0 (5)
C4—C3—Cl1 120.2 (4) C15—C16—Cl3 118.8 (4)
C2—C3—Cl1 116.9 (4) C17—C16—Cl3 119.2 (4)
C3—C4—C5 117.8 (4) C18—C17—C16 118.4 (5)
C3—C4—H4 121.1 C18—C17—H17 120.8
C5—C4—H4 121.1 C16—C17—H17 120.8
C6—C5—C4 120.7 (5) C17—C18—C19 120.8 (5)
C6—C5—H5 119.6 C17—C18—H18 119.6
C4—C5—H5 119.6 C19—C18—H18 119.6
C1—C6—C5 120.6 (4) C18—C19—C14 119.7 (5)
C1—C6—H6 119.7 C18—C19—H19 120.2
C5—C6—H6 119.7 C14—C19—H19 120.2
O1—C7—N1 123.5 (4) O2—C20—N2 123.5 (4)
O1—C7—C8 120.0 (4) O2—C20—C21 120.6 (4)
N1—C7—C8 116.5 (4) N2—C20—C21 115.9 (4)
C13—C8—C9 119.6 (4) C22—C21—C26 120.2 (4)
C13—C8—C7 118.0 (4) C22—C21—C20 116.3 (4)
C9—C8—C7 122.4 (4) C26—C21—C20 123.3 (4)
C10—C9—C8 118.4 (4) C21—C22—C23 119.0 (4)
C10—C9—H9 120.8 C21—C22—H22 120.5
C8—C9—H9 120.8 C23—C22—H22 120.5
C11—C10—C9 121.6 (4) C24—C23—C22 121.9 (5)
C11—C10—Cl2 119.2 (4) C24—C23—Cl4 119.7 (4)
C9—C10—Cl2 119.2 (4) C22—C23—Cl4 118.4 (4)
C10—C11—C12 119.4 (5) C25—C24—C23 118.9 (4)
C10—C11—H11 120.3 C25—C24—H24 120.5
C12—C11—H11 120.3 C23—C24—H24 120.5
C13—C12—C11 120.3 (5) C24—C25—C26 120.9 (5)
C13—C12—H12 119.9 C24—C25—H25 119.5
C11—C12—H12 119.9 C26—C25—H25 119.5
C12—C13—C8 120.6 (4) C21—C26—C25 118.9 (5)
C12—C13—H13 119.7 C21—C26—H26 120.5
C8—C13—H13 119.7 C25—C26—H26 120.5
C7—N1—C1—C6 −150.4 (5) C20—N2—C14—C15 147.2 (5)
C7—N1—C1—C2 32.5 (7) C20—N2—C14—C19 −34.2 (7)
C6—C1—C2—C3 2.2 (6) C19—C14—C15—C16 0.3 (6)
N1—C1—C2—C3 179.4 (4) N2—C14—C15—C16 178.9 (4)
C1—C2—C3—C4 −1.8 (7) C14—C15—C16—C17 −0.3 (7)
C1—C2—C3—Cl1 179.6 (3) C14—C15—C16—Cl3 −179.6 (3)
C2—C3—C4—C5 1.3 (7) C15—C16—C17—C18 −0.3 (8)
Cl1—C3—C4—C5 179.9 (4) Cl3—C16—C17—C18 179.1 (4)
C3—C4—C5—C6 −1.2 (7) C16—C17—C18—C19 0.8 (8)
C2—C1—C6—C5 −2.3 (7) C17—C18—C19—C14 −0.8 (8)
N1—C1—C6—C5 −179.5 (4) C15—C14—C19—C18 0.2 (7)
C4—C5—C6—C1 1.7 (7) N2—C14—C19—C18 −178.3 (4)
C1—N1—C7—O1 1.2 (7) C14—N2—C20—O2 −2.7 (7)
C1—N1—C7—C8 −178.8 (4) C14—N2—C20—C21 177.2 (4)
O1—C7—C8—C13 −36.2 (6) O2—C20—C21—C22 35.5 (6)
N1—C7—C8—C13 143.8 (4) N2—C20—C21—C22 −144.4 (4)
O1—C7—C8—C9 142.1 (4) O2—C20—C21—C26 −140.5 (4)
N1—C7—C8—C9 −37.9 (6) N2—C20—C21—C26 39.5 (6)
C13—C8—C9—C10 0.8 (6) C26—C21—C22—C23 −1.7 (6)
C7—C8—C9—C10 −177.5 (4) C20—C21—C22—C23 −177.9 (4)
C8—C9—C10—C11 −2.6 (7) C21—C22—C23—C24 1.9 (7)
C8—C9—C10—Cl2 178.4 (3) C21—C22—C23—Cl4 −178.4 (3)
C9—C10—C11—C12 2.1 (8) C22—C23—C24—C25 −0.6 (7)
Cl2—C10—C11—C12 −178.8 (4) Cl4—C23—C24—C25 179.7 (4)
C10—C11—C12—C13 0.2 (7) C23—C24—C25—C26 −0.8 (8)
C11—C12—C13—C8 −2.0 (7) C22—C21—C26—C25 0.3 (6)
C9—C8—C13—C12 1.5 (7) C20—C21—C26—C25 176.3 (4)
C7—C8—C13—C12 179.8 (4) C24—C25—C26—C21 0.9 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1n···O2i 0.86 2.05 2.877 (4) 161.7
N2—H2n···O1 0.86 2.06 2.884 (5) 160.5

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2449).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.
  4. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  5. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462. [DOI] [PMC free article] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012099/ng2449sup1.cif

e-64-0o949-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012099/ng2449Isup2.hkl

e-64-0o949-Isup2.hkl (110.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES