Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 2;64(Pt 5):o779. doi: 10.1107/S1600536808008209

3-(4-Methyl­piperazin-1-yl)isobenzofuran-1(3H)-one1

Mustafa Odabaşoğlu a, Orhan Büyükgüngör b,*
PMCID: PMC2961237  PMID: 21202272

Abstract

In the mol­ecule of the title compound, C13H16N2O2, the phthalide ring system is virtually planar, with a dihedral angle between the fused five- and six-membered rings of 1.17 (4)°. The methyl­piperazine ring adopts a chair conformation. In the crystal structure, inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules, generating edge-fused R 3 3(17) ring motifs, to form a three-dimensional network.

Related literature

For a related structure, see: Odabaşoğlu & Büyükgüngör (2006). For ring motif details, see: Bernstein et al. (1995); Etter (1990). For ring conformation puckering parameters, see: Cremer & Pople (1975).graphic file with name e-64-0o779-scheme1.jpg

Experimental

Crystal data

  • C13H16N2O2

  • M r = 232.28

  • Monoclinic, Inline graphic

  • a = 13.1442 (7) Å

  • b = 6.0567 (4) Å

  • c = 15.7845 (10) Å

  • β = 104.022 (5)°

  • V = 1219.17 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.56 × 0.49 × 0.37 mm

Data collection

  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.952, T max = 0.969

  • 14223 measured reflections

  • 2394 independent reflections

  • 1890 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.091

  • S = 1.04

  • 2394 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808008209/hk2441sup1.cif

e-64-0o779-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008209/hk2441Isup2.hkl

e-64-0o779-Isup2.hkl (115.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.98 2.69 3.6135 (18) 157
C10—H10A⋯N2ii 0.97 2.60 3.5315 (17) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

The present work is part of a structural study of compounds of 3-substituted phthalides, and we report herein the structure of the title compound, (I).

In the molecule of (I), (Fig. 1), rings A (C2–C7) and B (C1/C2/C7/C8/O2) are, of course, planar. The dihedral angle between them is A/B = 1.17 (4)°. So, rings A and B are also nearly coplanar. Ring C (N1/N2/C9–C12) is not planar, having total puckering amplitude, QT, of 1.014 (3) Å. It adopts chair [φ = 29.44 (2)° and θ = 59.51 (3)°] conformation (Cremer & Pople, 1975).

In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules, generating edge-fused R33(17) (Fig. 2) ring motifs (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure.

Experimental

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006), using phthalaldehydic acid and 1-methylpiperazine as starting materials (yield; 85%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol–DMF (1:1) solution at room temperature.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of (I), showing the formation of R33(17) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, y + 1, z; (ii) 1 - x, 2 - y, 1/2 - z]. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C13H16N2O2 F000 = 496
Mr = 232.28 Dx = 1.265 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 14223 reflections
a = 13.1442 (7) Å θ = 1.3–27.2º
b = 6.0567 (4) Å µ = 0.09 mm1
c = 15.7845 (10) Å T = 296 K
β = 104.022 (5)º Prism, colourless
V = 1219.17 (13) Å3 0.56 × 0.49 × 0.37 mm
Z = 4

Data collection

Stoe IPDSII diffractometer 2394 independent reflections
Monochromator: plane graphite 1890 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.035
T = 296 K θmax = 26.0º
w–scan rotation method θmin = 1.6º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002) h = −16→16
Tmin = 0.952, Tmax = 0.969 k = −7→7
14223 measured reflections l = −19→19

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036   w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1087P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.14 e Å3
2394 reflections Δρmin = −0.11 e Å3
155 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.052 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.90768 (9) 0.78386 (19) 0.39052 (8) 0.0726 (3)
O2 0.83029 (7) 0.45298 (17) 0.38597 (6) 0.0573 (3)
N1 0.69300 (8) 0.23856 (17) 0.42651 (7) 0.0465 (3)
N2 0.47776 (8) 0.18458 (18) 0.34023 (6) 0.0468 (3)
C1 0.87740 (10) 0.6335 (2) 0.42833 (9) 0.0536 (3)
C2 0.88098 (9) 0.6114 (2) 0.52149 (9) 0.0500 (3)
C3 0.91995 (11) 0.7553 (3) 0.59001 (11) 0.0616 (4)
H3 0.9512 0.8881 0.5810 0.074*
C4 0.91066 (11) 0.6944 (3) 0.67175 (11) 0.0678 (4)
H4 0.9355 0.7880 0.7189 0.081*
C5 0.86475 (11) 0.4955 (3) 0.68471 (10) 0.0656 (4)
H5 0.8597 0.4574 0.7406 0.079*
C6 0.82633 (10) 0.3527 (3) 0.61639 (9) 0.0582 (4)
H6 0.7954 0.2194 0.6254 0.070*
C7 0.83528 (9) 0.4141 (2) 0.53414 (9) 0.0479 (3)
C8 0.80023 (10) 0.2952 (2) 0.44870 (9) 0.0502 (3)
H8 0.8419 0.1601 0.4509 0.060*
C9 0.66011 (11) 0.0825 (2) 0.35430 (9) 0.0520 (3)
H9A 0.7084 −0.0412 0.3621 0.062*
H9B 0.6608 0.1545 0.2995 0.062*
C10 0.55130 (11) 0.0013 (2) 0.35199 (9) 0.0515 (3)
H10A 0.5293 −0.1029 0.3044 0.062*
H10B 0.5515 −0.0746 0.4061 0.062*
C11 0.51096 (10) 0.3423 (2) 0.41085 (9) 0.0485 (3)
H11A 0.5086 0.2729 0.4657 0.058*
H11B 0.4629 0.4664 0.4017 0.058*
C12 0.62040 (10) 0.4247 (2) 0.41613 (9) 0.0468 (3)
H12A 0.6219 0.5054 0.3634 0.056*
H12B 0.6417 0.5244 0.4653 0.056*
C13 0.37178 (12) 0.1092 (3) 0.33673 (11) 0.0711 (5)
H13A 0.3252 0.2336 0.3289 0.107*
H13B 0.3706 0.0351 0.3903 0.107*
H13C 0.3496 0.0089 0.2887 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0645 (7) 0.0696 (7) 0.0885 (8) 0.0008 (5) 0.0281 (6) 0.0230 (6)
O2 0.0522 (5) 0.0658 (6) 0.0575 (6) 0.0024 (5) 0.0200 (4) 0.0016 (5)
N1 0.0447 (6) 0.0395 (6) 0.0549 (6) 0.0040 (5) 0.0116 (5) −0.0060 (5)
N2 0.0493 (6) 0.0476 (6) 0.0426 (6) −0.0004 (5) 0.0095 (4) −0.0034 (5)
C1 0.0395 (7) 0.0542 (8) 0.0687 (9) 0.0076 (6) 0.0164 (6) 0.0087 (7)
C2 0.0346 (6) 0.0504 (8) 0.0633 (8) 0.0055 (6) 0.0086 (6) 0.0033 (6)
C3 0.0409 (7) 0.0587 (9) 0.0816 (10) −0.0033 (6) 0.0082 (7) −0.0051 (8)
C4 0.0453 (8) 0.0845 (12) 0.0679 (10) −0.0015 (8) 0.0024 (7) −0.0171 (9)
C5 0.0471 (8) 0.0933 (12) 0.0535 (8) 0.0038 (8) 0.0066 (6) 0.0013 (8)
C6 0.0472 (8) 0.0642 (9) 0.0619 (8) −0.0007 (7) 0.0106 (6) 0.0092 (7)
C7 0.0372 (6) 0.0490 (8) 0.0558 (8) 0.0042 (6) 0.0080 (5) 0.0032 (6)
C8 0.0479 (7) 0.0448 (7) 0.0588 (8) 0.0064 (6) 0.0148 (6) 0.0027 (6)
C9 0.0587 (8) 0.0429 (7) 0.0544 (8) 0.0107 (6) 0.0140 (6) −0.0077 (6)
C10 0.0651 (8) 0.0407 (7) 0.0463 (7) −0.0012 (6) 0.0087 (6) −0.0069 (6)
C11 0.0495 (7) 0.0466 (7) 0.0514 (7) 0.0025 (6) 0.0165 (6) −0.0073 (6)
C12 0.0477 (7) 0.0372 (7) 0.0573 (8) 0.0032 (6) 0.0159 (6) −0.0065 (6)
C13 0.0568 (9) 0.0815 (11) 0.0733 (10) −0.0138 (8) 0.0123 (7) −0.0175 (9)

Geometric parameters (Å, °)

C1—O1 1.2078 (17) C9—C10 1.504 (2)
C1—O2 1.3512 (17) C9—H9A 0.9700
C1—C2 1.466 (2) C9—H9B 0.9700
C2—C7 1.3740 (19) C10—N2 1.4537 (17)
C2—C3 1.387 (2) C10—H10A 0.9700
C3—C4 1.375 (2) C10—H10B 0.9700
C3—H3 0.9300 C11—N2 1.4526 (16)
C4—C5 1.384 (2) C11—C12 1.5056 (18)
C4—H4 0.9300 C11—H11A 0.9700
C5—C6 1.379 (2) C11—H11B 0.9700
C5—H5 0.9300 C12—N1 1.4602 (16)
C6—C7 1.3826 (19) C12—H12A 0.9700
C6—H6 0.9300 C12—H12B 0.9700
C7—C8 1.4995 (19) C13—N2 1.4543 (18)
C8—N1 1.4098 (17) C13—H13A 0.9600
C8—O2 1.4966 (16) C13—H13B 0.9600
C8—H8 0.9800 C13—H13C 0.9600
C9—N1 1.4629 (16)
C1—O2—C8 110.62 (10) O2—C8—H8 108.8
C8—N1—C12 115.28 (10) C7—C8—H8 108.8
C8—N1—C9 116.08 (10) N1—C9—C10 109.26 (10)
C12—N1—C9 110.46 (10) N1—C9—H9A 109.8
C11—N2—C10 109.72 (10) C10—C9—H9A 109.8
C11—N2—C13 110.04 (11) N1—C9—H9B 109.8
C10—N2—C13 111.48 (12) C10—C9—H9B 109.8
O1—C1—O2 122.13 (14) H9A—C9—H9B 108.3
O1—C1—C2 129.07 (15) N2—C10—C9 110.63 (11)
O2—C1—C2 108.78 (12) N2—C10—H10A 109.5
C7—C2—C3 121.67 (14) C9—C10—H10A 109.5
C7—C2—C1 108.45 (12) N2—C10—H10B 109.5
C3—C2—C1 129.87 (14) C9—C10—H10B 109.5
C4—C3—C2 117.60 (15) H10A—C10—H10B 108.1
C4—C3—H3 121.2 N2—C11—C12 111.45 (10)
C2—C3—H3 121.2 N2—C11—H11A 109.3
C3—C4—C5 120.85 (15) C12—C11—H11A 109.3
C3—C4—H4 119.6 N2—C11—H11B 109.3
C5—C4—H4 119.6 C12—C11—H11B 109.3
C6—C5—C4 121.35 (14) H11A—C11—H11B 108.0
C6—C5—H5 119.3 N1—C12—C11 109.89 (10)
C4—C5—H5 119.3 N1—C12—H12A 109.7
C5—C6—C7 117.86 (14) C11—C12—H12A 109.7
C5—C6—H6 121.1 N1—C12—H12B 109.7
C7—C6—H6 121.1 C11—C12—H12B 109.7
C2—C7—C6 120.67 (13) H12A—C12—H12B 108.2
C2—C7—C8 109.69 (12) N2—C13—H13A 109.5
C6—C7—C8 129.64 (13) N2—C13—H13B 109.5
N1—C8—O2 113.53 (10) H13A—C13—H13B 109.5
N1—C8—C7 114.27 (11) N2—C13—H13C 109.5
O2—C8—C7 102.45 (10) H13A—C13—H13C 109.5
N1—C8—H8 108.8 H13B—C13—H13C 109.5
O1—C1—O2—C8 −179.48 (12) C2—C7—C8—O2 −1.01 (13)
C2—C1—O2—C8 −0.77 (13) C6—C7—C8—O2 178.33 (12)
O1—C1—C2—C7 178.69 (14) N1—C8—O2—C1 124.81 (11)
O2—C1—C2—C7 0.10 (14) C7—C8—O2—C1 1.08 (13)
O1—C1—C2—C3 −0.2 (2) O2—C8—N1—C12 −55.67 (14)
O2—C1—C2—C3 −178.84 (13) C7—C8—N1—C12 61.34 (15)
C7—C2—C3—C4 −0.5 (2) O2—C8—N1—C9 75.74 (14)
C1—C2—C3—C4 178.35 (13) C7—C8—N1—C9 −167.25 (11)
C2—C3—C4—C5 0.5 (2) C10—C9—N1—C8 167.50 (11)
C3—C4—C5—C6 −0.4 (2) C10—C9—N1—C12 −58.87 (14)
C4—C5—C6—C7 0.1 (2) N1—C9—C10—N2 59.53 (14)
C3—C2—C7—C6 0.25 (19) C9—C10—N2—C11 −58.56 (13)
C1—C2—C7—C6 −178.80 (11) C9—C10—N2—C13 179.29 (11)
C3—C2—C7—C8 179.66 (12) C12—C11—N2—C10 57.22 (14)
C1—C2—C7—C8 0.61 (14) C12—C11—N2—C13 −179.77 (12)
C5—C6—C7—C2 −0.08 (19) N2—C11—C12—N1 −56.78 (14)
C5—C6—C7—C8 −179.35 (13) C11—C12—N1—C8 −168.52 (10)
C2—C7—C8—N1 −124.24 (12) C11—C12—N1—C9 57.45 (14)
C6—C7—C8—N1 55.10 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.98 2.69 3.6135 (18) 157
C10—H10A···N2ii 0.97 2.60 3.5315 (17) 160

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

1

3-Substituted phthalides. XXXVI.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2441).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879–o1881.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808008209/hk2441sup1.cif

e-64-0o779-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008209/hk2441Isup2.hkl

e-64-0o779-Isup2.hkl (115.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES