Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 23;64(Pt 5):o894. doi: 10.1107/S1600536808010581

2-(4-Methyl­benzo­yl)benzoic acid monohydrate

Guang-Liang Song a, Shui-Ping Deng a, Shan Liu a, Hong-Jun Zhu a,*
PMCID: PMC2961241  PMID: 21202377

Abstract

In the title compound, C15H12O3·H2O, the two rings are oriented at a dihedral angle of 69.12 (3)°. In the crystal structure, intermolecular O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional framework.

Related literature

For a general background, see: Lin et al. (2004). For a related structure, see: Stanescu (1990). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o894-scheme1.jpg

Experimental

Crystal data

  • C15H12O3·H2O

  • M r = 258.26

  • Triclinic, Inline graphic

  • a = 7.5410 (15) Å

  • b = 8.7480 (17) Å

  • c = 10.728 (2) Å

  • α = 79.96 (3)°

  • β = 77.83 (3)°

  • γ = 85.63 (3)°

  • V = 680.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.973, T max = 0.982

  • 2638 measured reflections

  • 2435 independent reflections

  • 1840 reflections with I > 2σ(I)

  • R int = 0.052

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.193

  • S = 1.01

  • 2435 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010581/hk2446sup1.cif

e-64-0o894-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010581/hk2446Isup2.hkl

e-64-0o894-Isup2.hkl (119.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯O2i 0.85 2.42 2.842 (4) 111
OW—HWB⋯O1ii 0.85 2.38 2.803 (4) 111
O3—H3B⋯OW 0.82 1.80 2.601 (4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

2-(4-methylbenzoyl)benzoic acid (MBBA) is an important dye intermediate used for the synthesis of 2-methylanthraquinone (Lin et al., 2004). We report herein the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), (Fig. 1), contains one MBBA and one water molecules. The bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (C9-C14) are, of course, planar, and they are oriented at a dihedral angle of 69.12 (3)°.

In the crystal structure, intra- and intermolecular O-H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional framework (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound was prepared according to the method described by Stanescu (1990). Crystals of (I) suitable for X-ray analysis were obtained by dissolving MBBA (2.0 g) in water (100 ml) and evaporating water slowly at room temperature for about 15 d.

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and 0.85 Å (for H2O) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH and H2O H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C15H12O3·H2O Z = 2
Mr = 258.26 F000 = 272
Triclinic, P1 Dx = 1.260 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.5410 (15) Å Cell parameters from 25 reflections
b = 8.7480 (17) Å θ = 10–13º
c = 10.728 (2) Å µ = 0.09 mm1
α = 79.96 (3)º T = 294 (2) K
β = 77.83 (3)º Block, colorless
γ = 85.63 (3)º 0.30 × 0.20 × 0.20 mm
V = 680.6 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.052
Radiation source: fine-focus sealed tube θmax = 25.2º
Monochromator: graphite θmin = 2.0º
T = 294(2) K h = −8→9
ω/2θ scans k = −10→10
Absorption correction: ψ scan(North et al., 1968) l = 0→12
Tmin = 0.973, Tmax = 0.982 3 standard reflections
2638 measured reflections every 120 min
2435 independent reflections intensity decay: none
1840 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.193   w = 1/[σ2(Fo2) + (0.07P)2 + P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2435 reflections Δρmax = 0.39 e Å3
172 parameters Δρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3154 (3) 0.5779 (3) 0.2474 (3) 0.0606 (7)
O2 0.3457 (3) 0.2365 (3) 0.1235 (2) 0.0536 (6)
O3 0.1304 (3) 0.0831 (3) 0.1112 (3) 0.0741 (9)
H3B 0.2170 0.0218 0.0961 0.111*
OW 0.3621 (4) −0.1469 (3) 0.0679 (3) 0.0649 (7)
HWA 0.4748 −0.1368 0.0625 0.078*
HWB 0.3245 −0.2325 0.0583 0.078*
C1 0.3654 (8) 0.0097 (5) 0.7145 (4) 0.0894 (15)
H1A 0.2658 −0.0581 0.7457 0.134*
H1B 0.3792 0.0646 0.7818 0.134*
H1C 0.4749 −0.0505 0.6892 0.134*
C2 0.3286 (5) 0.1244 (4) 0.6000 (3) 0.0556 (9)
C3 0.4516 (5) 0.2367 (4) 0.5386 (3) 0.0552 (9)
H3A 0.5592 0.2396 0.5672 0.066*
C4 0.4163 (4) 0.3448 (4) 0.4351 (3) 0.0483 (8)
H4A 0.5005 0.4194 0.3948 0.058*
C5 0.2585 (4) 0.3428 (3) 0.3915 (3) 0.0426 (7)
C6 0.1346 (5) 0.2306 (4) 0.4517 (3) 0.0531 (8)
H6A 0.0271 0.2276 0.4229 0.064*
C7 0.1713 (6) 0.1227 (4) 0.5550 (3) 0.0599 (10)
H7A 0.0876 0.0475 0.5947 0.072*
C8 0.2224 (4) 0.4632 (3) 0.2816 (3) 0.0431 (7)
C9 0.0626 (4) 0.4530 (3) 0.2224 (3) 0.0412 (7)
C10 −0.0716 (4) 0.5713 (4) 0.2360 (3) 0.0491 (8)
H10A −0.0566 0.6524 0.2780 0.059*
C11 −0.2265 (4) 0.5683 (4) 0.1873 (3) 0.0537 (9)
H11A −0.3156 0.6474 0.1970 0.064*
C12 −0.2500 (4) 0.4501 (4) 0.1250 (3) 0.0539 (9)
H12A −0.3550 0.4489 0.0928 0.065*
C13 −0.1169 (4) 0.3311 (4) 0.1096 (3) 0.0471 (8)
H13A −0.1338 0.2506 0.0675 0.056*
C14 0.0391 (4) 0.3326 (3) 0.1566 (3) 0.0410 (7)
C15 0.1881 (4) 0.2129 (3) 0.1288 (3) 0.0438 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0532 (14) 0.0482 (14) 0.0769 (17) −0.0065 (11) −0.0189 (12) 0.0089 (12)
O2 0.0396 (13) 0.0515 (14) 0.0682 (15) 0.0127 (10) −0.0078 (11) −0.0156 (11)
O3 0.0535 (15) 0.0465 (14) 0.124 (2) 0.0084 (11) −0.0124 (15) −0.0292 (15)
OW 0.0646 (16) 0.0387 (13) 0.0809 (18) 0.0083 (11) 0.0040 (13) −0.0081 (12)
C1 0.128 (4) 0.062 (3) 0.071 (3) 0.016 (3) −0.027 (3) 0.009 (2)
C2 0.077 (3) 0.0425 (18) 0.0462 (19) 0.0114 (17) −0.0147 (17) −0.0077 (15)
C3 0.059 (2) 0.062 (2) 0.0473 (19) 0.0106 (17) −0.0213 (16) −0.0103 (16)
C4 0.0482 (19) 0.0444 (18) 0.0505 (18) 0.0008 (14) −0.0093 (15) −0.0050 (14)
C5 0.0420 (17) 0.0380 (16) 0.0456 (17) 0.0032 (13) −0.0067 (13) −0.0059 (13)
C6 0.058 (2) 0.0505 (19) 0.0506 (19) −0.0074 (16) −0.0137 (16) −0.0015 (15)
C7 0.082 (3) 0.0445 (19) 0.051 (2) −0.0144 (18) −0.0119 (18) 0.0037 (15)
C8 0.0378 (16) 0.0369 (16) 0.0499 (18) 0.0034 (13) −0.0020 (13) −0.0049 (13)
C9 0.0350 (16) 0.0399 (16) 0.0415 (16) 0.0079 (12) −0.0010 (12) 0.0007 (13)
C10 0.0444 (18) 0.0440 (18) 0.0552 (19) 0.0105 (14) −0.0036 (15) −0.0114 (15)
C11 0.0408 (18) 0.056 (2) 0.058 (2) 0.0182 (15) −0.0038 (15) −0.0090 (16)
C12 0.0344 (17) 0.065 (2) 0.057 (2) 0.0076 (15) −0.0078 (15) −0.0010 (17)
C13 0.0420 (18) 0.0439 (17) 0.0506 (18) −0.0004 (14) −0.0039 (14) −0.0022 (14)
C14 0.0338 (16) 0.0361 (16) 0.0465 (17) 0.0058 (12) −0.0004 (13) −0.0012 (13)
C15 0.0453 (19) 0.0362 (16) 0.0479 (18) 0.0055 (13) −0.0072 (14) −0.0068 (13)

Geometric parameters (Å, °)

O1—C8 1.227 (4) C5—C8 1.494 (4)
O2—C15 1.209 (4) C6—C7 1.386 (5)
O3—C15 1.303 (4) C6—H6A 0.9300
O3—H3B 0.8200 C7—H7A 0.9300
OW—HWA 0.8501 C8—C9 1.491 (4)
OW—HWB 0.8500 C9—C10 1.396 (4)
C1—C2 1.505 (5) C9—C14 1.407 (4)
C1—H1A 0.9600 C10—C11 1.380 (5)
C1—H1B 0.9600 C10—H10A 0.9300
C1—H1C 0.9600 C11—C12 1.366 (5)
C2—C7 1.374 (5) C11—H11A 0.9300
C2—C3 1.384 (5) C12—C13 1.396 (5)
C3—C4 1.386 (5) C12—H12A 0.9300
C3—H3A 0.9300 C13—C14 1.376 (4)
C4—C5 1.370 (4) C13—H13A 0.9300
C4—H4A 0.9300 C14—C15 1.495 (4)
C5—C6 1.385 (4)
C15—O3—H3B 109.5 C6—C7—H7A 119.3
HWA—OW—HWB 120.0 O1—C8—C9 119.6 (3)
C2—C1—H1A 109.5 O1—C8—C5 119.7 (3)
C2—C1—H1B 109.5 C9—C8—C5 120.4 (3)
H1A—C1—H1B 109.5 C10—C9—C14 119.1 (3)
C2—C1—H1C 109.5 C10—C9—C8 116.5 (3)
H1A—C1—H1C 109.5 C14—C9—C8 124.4 (3)
H1B—C1—H1C 109.5 C11—C10—C9 120.2 (3)
C7—C2—C3 118.2 (3) C11—C10—H10A 119.9
C7—C2—C1 121.2 (4) C9—C10—H10A 119.9
C3—C2—C1 120.6 (4) C12—C11—C10 120.5 (3)
C2—C3—C4 120.8 (3) C12—C11—H11A 119.8
C2—C3—H3A 119.6 C10—C11—H11A 119.8
C4—C3—H3A 119.6 C11—C12—C13 120.2 (3)
C5—C4—C3 120.6 (3) C11—C12—H12A 119.9
C5—C4—H4A 119.7 C13—C12—H12A 119.9
C3—C4—H4A 119.7 C14—C13—C12 120.2 (3)
C4—C5—C6 119.2 (3) C14—C13—H13A 119.9
C4—C5—C8 119.3 (3) C12—C13—H13A 119.9
C6—C5—C8 121.5 (3) C13—C14—C9 119.7 (3)
C5—C6—C7 119.8 (3) C13—C14—C15 119.7 (3)
C5—C6—H6A 120.1 C9—C14—C15 120.4 (3)
C7—C6—H6A 120.1 O2—C15—O3 124.3 (3)
C2—C7—C6 121.5 (3) O2—C15—C14 122.5 (3)
C2—C7—H7A 119.3 O3—C15—C14 113.3 (3)
C7—C2—C3—C4 0.3 (5) C5—C8—C9—C14 −64.3 (4)
C1—C2—C3—C4 −178.5 (3) C14—C9—C10—C11 1.1 (5)
C2—C3—C4—C5 0.1 (5) C8—C9—C10—C11 −178.1 (3)
C3—C4—C5—C6 −0.4 (5) C9—C10—C11—C12 −0.2 (5)
C3—C4—C5—C8 178.6 (3) C10—C11—C12—C13 −0.2 (5)
C4—C5—C6—C7 0.3 (5) C11—C12—C13—C14 −0.3 (5)
C8—C5—C6—C7 −178.7 (3) C12—C13—C14—C9 1.2 (4)
C3—C2—C7—C6 −0.5 (5) C12—C13—C14—C15 −174.3 (3)
C1—C2—C7—C6 178.3 (4) C10—C9—C14—C13 −1.6 (4)
C5—C6—C7—C2 0.2 (5) C8—C9—C14—C13 177.6 (3)
C4—C5—C8—O1 −13.4 (4) C10—C9—C14—C15 173.9 (3)
C6—C5—C8—O1 165.5 (3) C8—C9—C14—C15 −7.0 (4)
C4—C5—C8—C9 172.9 (3) C13—C14—C15—O2 152.2 (3)
C6—C5—C8—C9 −8.1 (4) C9—C14—C15—O2 −23.2 (5)
O1—C8—C9—C10 −58.8 (4) C13—C14—C15—O3 −27.6 (4)
C5—C8—C9—C10 114.9 (3) C9—C14—C15—O3 156.9 (3)
O1—C8—C9—C14 122.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
OW—HWA···O2i 0.85 2.42 2.842 (4) 111
OW—HWB···O1ii 0.85 2.38 2.803 (4) 111
O3—H3B···OW 0.82 1.80 2.601 (4) 165

Symmetry codes: (i) −x+1, −y, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2446).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Lin, L., Yang, J. Z. & Xu, L. (2004). Ranliao Yu Ranse, 41, 289–290.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stanescu, M. D. (1990). Chem. Mat. Sci.52, 67–72.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010581/hk2446sup1.cif

e-64-0o894-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010581/hk2446Isup2.hkl

e-64-0o894-Isup2.hkl (119.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES