Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 4;64(Pt 5):m628. doi: 10.1107/S160053680800874X

1,1′-(Butane-1,4-di­yl)diimidazole-3,3′-diium tetra­chloridozincate(II) dihydrate

Ying-Hui Yu a, Ai-E Shi a, Yu Su a, Guang-Feng Hou a, Jin-Sheng Gao a,*
PMCID: PMC2961250  PMID: 21202182

Abstract

In the title compound, (C10H16N4)[ZnCl4]·2H2O, the cation lies abouton a center of inversion and the anion about a twofold rotation axis. The ZnII atom is four-coordinate in a tetra­hedral environment. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds into a two-dimensional network.

Related literature

For background and the synthesis of 1,1′-(1,4-butanedi­yl)diimidazole, see: Ma et al. (2003)graphic file with name e-64-0m628-scheme1.jpg

Experimental

Crystal data

  • (C10H16N4)[ZnCl4]·2H2O

  • M r = 435.47

  • Monoclinic, Inline graphic

  • a = 7.4010 (15) Å

  • b = 10.927 (2) Å

  • c = 11.058 (2) Å

  • β = 95.23 (3)°

  • V = 890.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 291 (2) K

  • 0.18 × 0.17 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.713, T max = 0.751

  • 8575 measured reflections

  • 2042 independent reflections

  • 1760 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.081

  • S = 1.07

  • 2042 reflections

  • 101 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800874X/ng2438sup1.cif

e-64-0m628-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800874X/ng2438Isup2.hkl

e-64-0m628-Isup2.hkl (100.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10⋯Cl3i 0.85 2.43 3.275 (2) 177
O1—H9⋯Cl2ii 0.85 2.52 3.337 (3) 161
N2—H3⋯Cl2i 0.85 (3) 2.82 (3) 3.350 (2) 122 (3)
N2—H3⋯O1 0.85 (3) 2.15 (3) 2.890 (3) 145 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Heilongjiang University for supporting this study.

supplementary crystallographic information

Comment

The 1,1'-(1,4-butanediyl)diimidazole can be used as a flexible ligand to construct coordination polymer materials(Ma et al.., 2003). In our attempt to synthesize the zinc complex with the 1,1'-(1,4-butanediyl)diimidazole, we unexpectedly obtained the title compound (I). Herein, we report its crystal structure.

The ZnII atom lies on an inversion center and is coordinated by four chlorine anions in an tetrahedronal environment(Figure 1). The 1,1'-(1,4-butanediyl)diimidazole molecule also lies on an inversion center and its N atom is protonated.

In the crystal structure, the cations and anions are linked by N—H···Cl hydrogen bonds. In addition, the water molecules are both as acceptor and donor of hydrogen bond link these molecule into a two-dimensional supramolecular network via N—H···O, O—H···Cl hydrogen bonds (Table 1; Figure 2).

Experimental

1,1'-(1,4-Butanediyl)diimidazole was prepared of imidazole and 1,4-dibromobutane in dimethylsulfoxide solution (Ma et al.., 2003). ZnCl2 (0.272 g, 2 mmol) and 1,1'-(1,4-butanediyl)diimidazole (0.380 g, 2 mmol) were dissolved in hot methanol solution (15 ml) and added two drops hydrochloric acid then a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Colroless crystals of (I) were obtained. Unexpectedly, the salt-type adducts of this ligands was crystallized from solution.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic) and with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference Fourier map and free refined, Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, H···H = 1.39 and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the intramolecular hydrogen bonding interactions.

Fig. 2.

Fig. 2.

A partial packing view, showing the two-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

(C10H16N4)[ZnCl4]·2H2O F000 = 444
Mr = 435.47 Dx = 1.624 Mg m3
Monoclinic, P2/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yac Cell parameters from 6883 reflections
a = 7.4010 (15) Å θ = 3.2–27.5º
b = 10.927 (2) Å µ = 1.99 mm1
c = 11.058 (2) Å T = 291 (2) K
β = 95.23 (3)º Block, colorless
V = 890.6 (3) Å3 0.18 × 0.17 × 0.15 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 2042 independent reflections
Radiation source: fine-focus sealed tube 1760 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.042
T = 291(2) K θmax = 27.5º
ω scans θmin = 3.2º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) h = −9→9
Tmin = 0.713, Tmax = 0.751 k = −14→14
8575 measured reflections l = −14→14

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032   w = 1/[σ2(Fo2) + (0.0301P)2 + 0.5173P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.47 e Å3
2042 reflections Δρmin = −0.37 e Å3
101 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.038 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.7500 0.75494 (3) 0.2500 0.03710 (15)
C1 0.4713 (3) 0.1878 (2) 0.2017 (2) 0.0405 (5)
H1 0.4499 0.1104 0.1684 0.049*
C2 0.4320 (4) 0.2946 (2) 0.1464 (2) 0.0469 (6)
H2 0.3790 0.3056 0.0676 0.056*
C3 0.5555 (4) 0.3335 (2) 0.3300 (2) 0.0448 (6)
H4 0.6019 0.3752 0.3993 0.054*
C4 0.6136 (3) 0.1221 (2) 0.4085 (2) 0.0450 (6)
H5 0.6771 0.1641 0.4770 0.054*
H6 0.6995 0.0680 0.3742 0.054*
C5 0.4626 (3) 0.0464 (2) 0.4529 (2) 0.0376 (5)
H7 0.3985 0.0040 0.3849 0.045*
H8 0.3770 0.0997 0.4885 0.045*
Cl2 0.87983 (10) 0.63431 (6) 0.11389 (5) 0.0543 (2)
Cl3 0.96871 (9) 0.86758 (5) 0.35304 (6) 0.0529 (2)
H3 0.475 (4) 0.461 (3) 0.216 (3) 0.066 (9)*
N1 0.5489 (2) 0.21294 (16) 0.31649 (16) 0.0347 (4)
N2 0.4846 (3) 0.3841 (2) 0.2278 (2) 0.0499 (5)
O1 0.3280 (3) 0.6019 (2) 0.1132 (2) 0.0775 (7)
H9 0.2192 0.6042 0.1319 0.116*
H10 0.3814 0.6708 0.1191 0.116*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0465 (2) 0.0277 (2) 0.0365 (2) 0.000 0.00102 (15) 0.000
C1 0.0413 (12) 0.0380 (12) 0.0412 (12) 0.0001 (10) −0.0009 (10) −0.0065 (10)
C2 0.0495 (14) 0.0545 (14) 0.0359 (12) 0.0036 (12) 0.0001 (10) 0.0056 (11)
C3 0.0631 (16) 0.0326 (11) 0.0393 (12) −0.0061 (10) 0.0085 (11) −0.0020 (10)
C4 0.0403 (13) 0.0434 (13) 0.0499 (13) −0.0007 (10) −0.0029 (10) 0.0146 (11)
C5 0.0362 (11) 0.0354 (11) 0.0408 (12) 0.0017 (9) 0.0019 (9) 0.0055 (10)
Cl2 0.0739 (5) 0.0480 (4) 0.0405 (3) 0.0215 (3) 0.0029 (3) −0.0024 (3)
Cl3 0.0563 (4) 0.0355 (3) 0.0639 (4) −0.0094 (3) −0.0101 (3) 0.0011 (3)
N1 0.0374 (10) 0.0297 (8) 0.0371 (9) −0.0009 (7) 0.0030 (8) 0.0036 (7)
N2 0.0659 (15) 0.0330 (10) 0.0522 (12) 0.0040 (10) 0.0135 (10) 0.0086 (9)
O1 0.0740 (15) 0.0611 (13) 0.0940 (17) −0.0160 (11) −0.0113 (12) 0.0114 (12)

Geometric parameters (Å, °)

Zn1—Cl3 2.2577 (8) C3—H4 0.9300
Zn1—Cl3i 2.2577 (8) C4—N1 1.470 (3)
Zn1—Cl2 2.2782 (8) C4—C5 1.508 (3)
Zn1—Cl2i 2.2782 (7) C4—H5 0.9700
C1—C2 1.337 (3) C4—H6 0.9700
C1—N1 1.372 (3) C5—C5ii 1.521 (4)
C1—H1 0.9300 C5—H7 0.9700
C2—N2 1.362 (3) C5—H8 0.9700
C2—H2 0.9300 N2—H3 0.85 (3)
C3—N2 1.322 (3) O1—H9 0.8500
C3—N1 1.326 (3) O1—H10 0.8501
Cl3—Zn1—Cl3i 113.93 (4) C5—C4—H5 109.0
Cl3—Zn1—Cl2 108.83 (3) N1—C4—H6 109.0
Cl3i—Zn1—Cl2 107.95 (3) C5—C4—H6 109.0
Cl3—Zn1—Cl2i 107.95 (3) H5—C4—H6 107.8
Cl3i—Zn1—Cl2i 108.83 (3) C4—C5—C5ii 110.7 (2)
Cl2—Zn1—Cl2i 109.29 (4) C4—C5—H7 109.5
C2—C1—N1 107.7 (2) C5ii—C5—H7 109.5
C2—C1—H1 126.2 C4—C5—H8 109.5
N1—C1—H1 126.2 C5ii—C5—H8 109.5
C1—C2—N2 106.7 (2) H7—C5—H8 108.1
C1—C2—H2 126.7 C3—N1—C1 108.14 (19)
N2—C2—H2 126.7 C3—N1—C4 125.9 (2)
N2—C3—N1 108.1 (2) C1—N1—C4 125.95 (19)
N2—C3—H4 125.9 C3—N2—C2 109.4 (2)
N1—C3—H4 125.9 C3—N2—H3 125 (2)
N1—C4—C5 113.02 (19) C2—N2—H3 126 (2)
N1—C4—H5 109.0 H9—O1—H10 113.5

Symmetry codes: (i) −x+3/2, y, −z+1/2; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H10···Cl3i 0.85 2.43 3.275 (2) 177
O1—H9···Cl2iii 0.85 2.52 3.337 (3) 161
N2—H3···Cl2i 0.85 (3) 2.82 (3) 3.350 (2) 122 (3)
N2—H3···O1 0.85 (3) 2.15 (3) 2.890 (3) 145 (3)

Symmetry codes: (i) −x+3/2, y, −z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2438).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem.42, 7531–7534. [DOI] [PubMed]
  3. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800874X/ng2438sup1.cif

e-64-0m628-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800874X/ng2438Isup2.hkl

e-64-0m628-Isup2.hkl (100.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES