Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 10;64(Pt 5):o814. doi: 10.1107/S1600536808008581

(E)-3-(4-Hydr­oxy-3-methoxy­benzyl­idene)-4-(4-hydroxy­phen­yl)pyrrolidin-2-one

Yi-Feng Zhou a, Xiao-Bing Wang b, Jin Qi a, Bo-Yang Yu a,*
PMCID: PMC2961252  PMID: 21202304

Abstract

The title compound, C18H17NO4, was isolated from an ethanol extract of Ophiopogon japonicus. The dihedral angle between the 4-hydroxy-3-methoxyphenyl ring and the pyrrolidine ring is 17.4 (1)°. The 4-hydroxyphenyl ring makes a dihedral angle of 69.74 (6)° with the least-squares plane through the 4-hydroxy-3-methoxyphenyl ring and the pyrrolidine ring. The conformation of the pyrrolidine fragment is similar to a T-form. The crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the chemical components and pharmacological properties of the plant Ophiopogon japonicus, see: Anh et al. (2003); Kou et al. (2005) & Yu (2007). For related literature, see: Bernstein et al. (1995).graphic file with name e-64-0o814-scheme1.jpg

Experimental

Crystal data

  • C18H17NO4

  • M r = 311.33

  • Monoclinic, Inline graphic

  • a = 6.388 (1) Å

  • b = 14.520 (2) Å

  • c = 16.880 (2) Å

  • β = 96.514 (2)°

  • V = 1555.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.47 × 0.42 × 0.35 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999) T min = 0.954, T max = 0.969

  • 9225 measured reflections

  • 3387 independent reflections

  • 1756 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.137

  • S = 1.02

  • 3387 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008581/lx2053sup1.cif

e-64-0o814-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008581/lx2053Isup2.hkl

e-64-0o814-Isup2.hkl (134.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O1i 0.86 2.09 2.948 (2) 172
O2—H2⋯O1ii 0.82 1.95 2.675 (2) 147
O4—H4⋯O2iii 0.82 2.00 2.721 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (grant No. 30672603 to Dr Bo-Yang Yu).

supplementary crystallographic information

Comment

The plant of Ophiopogon japonicus (L. f.) Ker-Gawl.(Liliaceae) is widely distributed in South-east Asia, especially in most areaof China, and its tuber root as a famous traditional medicine are widely usedin China to cure acute and chronic inflammation and cardiovascular diseasesincluding thrombotic diseases for thousands of years (Yu, 2007; Kou, et al., 2005). Chemical studies have shown that this plant includes steroidal saponins, homoisoflavonoids andmonoterpene glycosides etc (Anh, et al., 2003). Herein we report the molecular and crystal structure of the title compound (Fig.1), which was isolated from an ethanol extract of the plant of Ophiopogon japonicus.

The main components of the title compound were two aromatic rings, A(C5—C10) and B(C12—C17) and a pyrrolidine ring C(N1/C1—C4) as shown in Fig. 1. Fig. 2 presents the packing diagram of the title compound. Paired molecules at the inversional position assembled via supromolecular sython R22(8) (Bernstein, et al., 1995) which consist of hydrogen bonds N1—H1···O1i, O2—H2···O1ii and O4—H4···O2iii (Symmetry code as in Fig. 2.).

Experimental

Material from the dried subterranean parts of Ophiopogon japonicus (L. f.) Ker-Gawl.(Liliaceae) (40 kg),collected from Sichuan Province in China, was extracted with hot 60% EtOH (3×3 h) under refluxing. The concentrated extract was subjected to D-101 macroporous resin column chromatography eluted successively with EtOH-H2O(0:100, 30:70, 90:100) to give three fractions (I-III). The concentratedresidue of fraction III (EtOH-H2O, 90:10) (330 g) was further dissolved in water, and extractedwith EtOAc and n-BuOH successively. The EtOAc extract (107 g) was loaded onto a silica-gel column (200–300 mesh, 600 g) eluted with a gradientof 100% CHCl3 to CHCl3—MeOH (50:50) to give 18 fractions,which was pooled by common thin-layer chromatography characteristics. Fraction9 was subjected to repeated chromatography over silica-gel and Sephadex LH-20columns, gave compound (I) (yield 6 mg, m.p. 518 K). Prismatic crystalssuitable for X-ray studies were grown from MeOH by slow evaporation at roomtemperature.

Refinement

(type here to add refinement details)

Figures

Fig. 1.

Fig. 1.

A drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

N—H···O and O—H···O hydrogen bond interactions (dotted lines) in the title compound. [Symmetry code: (i) -x, -y+1, -z+1; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z.]

Crystal data

C18H17NO4 F000 = 656
Mr = 311.33 Dx = 1.329 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1858 reflections
a = 6.388 (1) Å θ = 2.4–23.1º
b = 14.520 (2) Å µ = 0.09 mm1
c = 16.880 (2) Å T = 298 (2) K
β = 96.514 (2)º Block, colourless
V = 1555.6 (4) Å3 0.47 × 0.42 × 0.35 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3387 independent reflections
Radiation source: fine-focus sealed tube 1756 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.041
Detector resolution: 10.0 pixels mm-1 θmax = 27.0º
T = 298(2) K θmin = 1.9º
φ and ω scans h = −8→7
Absorption correction: multi-scan(SADABS; Sheldrick, 1999) k = −13→18
Tmin = 0.954, Tmax = 0.969 l = −20→21
9225 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.137   w = 1/[σ2(Fo2) + (0.0524P)2 + 0.295P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.000
3387 reflections Δρmax = 0.22 e Å3
209 parameters Δρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.1955 (3) 0.50621 (13) 0.43227 (10) 0.0407 (5)
H1 0.1694 0.5304 0.4766 0.049*
O1 −0.1146 (2) 0.42888 (11) 0.40852 (9) 0.0482 (4)
O2 0.3756 (3) 0.78432 (11) 0.09921 (11) 0.0678 (6)
H2 0.2621 0.8112 0.0921 0.102*
O3 0.5094 (3) 0.35253 (12) 0.04340 (10) 0.0600 (5)
O4 0.2796 (3) 0.20997 (13) −0.01836 (11) 0.0762 (6)
H4 0.3957 0.2277 −0.0283 0.114*
C1 0.0580 (4) 0.45390 (14) 0.38830 (13) 0.0372 (5)
C2 0.1463 (3) 0.43166 (15) 0.31329 (12) 0.0358 (5)
C3 0.3493 (3) 0.48408 (15) 0.31322 (12) 0.0382 (5)
H3 0.4610 0.4408 0.3031 0.046*
C4 0.3928 (4) 0.5193 (2) 0.39970 (13) 0.0536 (7)
H4A 0.5045 0.4840 0.4294 0.064*
H4B 0.4325 0.5838 0.4008 0.064*
C5 0.3457 (3) 0.56253 (15) 0.25340 (12) 0.0365 (5)
C6 0.1668 (4) 0.59272 (15) 0.20783 (14) 0.0433 (6)
H6 0.0395 0.5631 0.2121 0.052*
C7 0.1720 (4) 0.66655 (16) 0.15552 (14) 0.0472 (6)
H7 0.0495 0.6858 0.1250 0.057*
C8 0.3594 (4) 0.71071 (16) 0.14939 (14) 0.0476 (6)
C9 0.5397 (4) 0.68061 (18) 0.19335 (17) 0.0562 (7)
H9 0.6671 0.7098 0.1884 0.067*
C10 0.5334 (4) 0.60767 (17) 0.24462 (15) 0.0523 (7)
H10 0.6572 0.5880 0.2741 0.063*
C11 0.0515 (4) 0.37125 (15) 0.26114 (13) 0.0401 (6)
H11 −0.0771 0.3493 0.2741 0.048*
C12 0.1159 (4) 0.33400 (15) 0.18741 (13) 0.0396 (6)
C13 0.2897 (4) 0.36572 (15) 0.15170 (13) 0.0419 (6)
H13 0.3690 0.4145 0.1747 0.050*
C14 0.3449 (4) 0.32596 (16) 0.08338 (13) 0.0431 (6)
C15 0.2293 (4) 0.25225 (17) 0.04909 (14) 0.0507 (7)
C16 0.0567 (4) 0.22166 (18) 0.08261 (15) 0.0619 (8)
H16 −0.0229 0.1732 0.0591 0.074*
C17 −0.0002 (4) 0.26206 (17) 0.15097 (14) 0.0536 (7)
H17 −0.1182 0.2407 0.1729 0.064*
C18 0.6343 (4) 0.4276 (2) 0.07462 (17) 0.0672 (8)
H18A 0.5482 0.4818 0.0749 0.101*
H18B 0.7457 0.4382 0.0420 0.101*
H18C 0.6937 0.4137 0.1281 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.0424 (11) 0.0505 (12) 0.0299 (10) 0.0051 (9) 0.0069 (8) −0.0053 (9)
O1 0.0476 (10) 0.0547 (11) 0.0451 (10) −0.0041 (8) 0.0177 (8) −0.0079 (8)
O2 0.0807 (14) 0.0491 (11) 0.0812 (14) 0.0105 (10) 0.0418 (11) 0.0189 (10)
O3 0.0623 (11) 0.0676 (12) 0.0549 (11) −0.0166 (10) 0.0276 (9) −0.0155 (9)
O4 0.0992 (15) 0.0755 (13) 0.0612 (12) −0.0284 (11) 0.0411 (11) −0.0326 (10)
C1 0.0417 (13) 0.0371 (13) 0.0333 (12) 0.0044 (11) 0.0064 (10) −0.0001 (10)
C2 0.0380 (12) 0.0397 (13) 0.0300 (12) 0.0038 (10) 0.0053 (10) 0.0047 (10)
C3 0.0396 (13) 0.0456 (14) 0.0298 (12) 0.0048 (11) 0.0053 (10) −0.0016 (10)
C4 0.0417 (14) 0.085 (2) 0.0340 (14) −0.0061 (13) 0.0032 (11) −0.0047 (13)
C5 0.0387 (13) 0.0396 (13) 0.0319 (12) −0.0006 (10) 0.0071 (10) −0.0053 (10)
C6 0.0380 (13) 0.0444 (14) 0.0483 (15) −0.0005 (11) 0.0087 (11) 0.0033 (11)
C7 0.0463 (15) 0.0490 (15) 0.0466 (15) 0.0082 (12) 0.0070 (12) 0.0062 (12)
C8 0.0598 (17) 0.0367 (14) 0.0506 (15) 0.0017 (12) 0.0251 (13) 0.0006 (11)
C9 0.0492 (16) 0.0550 (17) 0.0660 (18) −0.0134 (13) 0.0137 (14) 0.0001 (14)
C10 0.0410 (15) 0.0613 (17) 0.0540 (16) −0.0058 (13) 0.0026 (12) 0.0039 (13)
C11 0.0427 (14) 0.0413 (13) 0.0373 (13) −0.0026 (11) 0.0090 (11) 0.0029 (10)
C12 0.0480 (14) 0.0402 (13) 0.0314 (12) −0.0016 (11) 0.0077 (10) −0.0009 (10)
C13 0.0490 (14) 0.0412 (13) 0.0361 (13) −0.0059 (11) 0.0073 (11) −0.0052 (10)
C14 0.0497 (14) 0.0435 (14) 0.0376 (13) −0.0030 (11) 0.0117 (11) −0.0006 (11)
C15 0.0682 (18) 0.0477 (15) 0.0384 (14) −0.0065 (13) 0.0164 (13) −0.0084 (11)
C16 0.079 (2) 0.0590 (18) 0.0512 (16) −0.0282 (15) 0.0212 (14) −0.0149 (13)
C17 0.0654 (18) 0.0560 (16) 0.0424 (15) −0.0190 (13) 0.0198 (13) −0.0089 (12)
C18 0.0575 (18) 0.079 (2) 0.0671 (19) −0.0173 (16) 0.0167 (15) −0.0032 (16)

Geometric parameters (Å, °)

N—C1 1.323 (3) C6—H6 0.9300
N—C4 1.444 (3) C7—C8 1.372 (3)
N—H1 0.8600 C7—H7 0.9300
O1—C1 1.245 (2) C8—C9 1.369 (3)
O2—C8 1.375 (3) C9—C10 1.371 (3)
O2—H2 0.8200 C9—H9 0.9300
O3—C14 1.367 (3) C10—H10 0.9300
O3—C18 1.417 (3) C11—C12 1.458 (3)
O4—C15 1.364 (3) C11—H11 0.9300
O4—H4 0.8200 C12—C17 1.384 (3)
C1—C2 1.479 (3) C12—C13 1.400 (3)
C2—C11 1.338 (3) C13—C14 1.371 (3)
C2—C3 1.504 (3) C13—H13 0.9300
C3—C5 1.521 (3) C14—C15 1.389 (3)
C3—C4 1.542 (3) C15—C16 1.369 (3)
C3—H3 0.9800 C16—C17 1.379 (3)
C4—H4A 0.9700 C16—H16 0.9300
C4—H4B 0.9700 C17—H17 0.9300
C5—C6 1.375 (3) C18—H18A 0.9600
C5—C10 1.389 (3) C18—H18B 0.9600
C6—C7 1.392 (3) C18—H18C 0.9600
C1—N—C4 114.5 (2) C7—C8—O2 122.5 (2)
C1—N—H1 122.8 C8—C9—C10 120.4 (2)
C4—N—H1 122.8 C8—C9—H9 119.8
C8—O2—H2 109.5 C10—C9—H9 119.8
C14—O3—C18 117.7 (2) C9—C10—C5 121.3 (2)
C15—O4—H4 109.5 C9—C10—H10 119.4
O1—C1—N 124.4 (2) C5—C10—H10 119.4
O1—C1—C2 127.4 (2) C2—C11—C12 130.9 (2)
N—C1—C2 108.20 (19) C2—C11—H11 114.6
C11—C2—C1 121.2 (2) C12—C11—H11 114.6
C11—C2—C3 131.1 (2) C17—C12—C13 117.9 (2)
C1—C2—C3 107.6 (2) C17—C12—C11 118.1 (2)
C2—C3—C5 115.6 (2) C13—C12—C11 124.0 (2)
C2—C3—C4 103.3 (2) C14—C13—C12 121.0 (2)
C5—C3—C4 111.6 (2) C14—C13—H13 119.5
C2—C3—H3 108.7 C12—C13—H13 119.5
C5—C3—H3 108.7 O3—C14—C13 125.6 (2)
C4—C3—H3 108.7 O3—C14—C15 114.4 (2)
N—C4—C3 104.2 (2) C13—C14—C15 120.0 (2)
N—C4—H4A 110.9 O4—C15—C16 118.4 (2)
C3—C4—H4A 110.9 O4—C15—C14 122.0 (2)
N—C4—H4B 110.9 C16—C15—C14 119.5 (2)
C3—C4—H4B 110.9 C15—C16—C17 120.6 (2)
H4A—C4—H4B 108.9 C15—C16—H16 119.7
C6—C5—C10 117.5 (2) C17—C16—H16 119.7
C6—C5—C3 124.0 (2) C16—C17—C12 120.9 (2)
C10—C5—C3 118.4 (2) C16—C17—H17 119.5
C5—C6—C7 121.5 (2) C12—C17—H17 119.5
C5—C6—H6 119.2 O3—C18—H18A 109.5
C7—C6—H6 119.2 O3—C18—H18B 109.5
C8—C7—C6 119.4 (2) H18A—C18—H18B 109.5
C8—C7—H7 120.3 O3—C18—H18C 109.5
C6—C7—H7 120.3 H18A—C18—H18C 109.5
C9—C8—C7 119.8 (2) H18B—C18—H18C 109.5
C9—C8—O2 117.7 (2)
C4—N—C1—O1 174.6 (2) O2—C8—C9—C10 179.8 (2)
C4—N—C1—C2 −5.3 (3) C8—C9—C10—C5 0.0 (4)
O1—C1—C2—C11 −7.4 (4) C6—C5—C10—C9 1.0 (3)
N—C1—C2—C11 172.5 (2) C3—C5—C10—C9 −178.1 (2)
O1—C1—C2—C3 175.2 (2) C1—C2—C11—C12 −175.0 (2)
N—C1—C2—C3 −4.9 (2) C3—C2—C11—C12 1.8 (4)
C11—C2—C3—C5 72.8 (3) C2—C11—C12—C17 170.9 (2)
C1—C2—C3—C5 −110.1 (2) C2—C11—C12—C13 −8.2 (4)
C11—C2—C3—C4 −165.1 (2) C17—C12—C13—C14 −0.9 (4)
C1—C2—C3—C4 12.0 (2) C11—C12—C13—C14 178.3 (2)
C1—N—C4—C3 12.9 (3) C18—O3—C14—C13 −0.1 (4)
C2—C3—C4—N −14.5 (2) C18—O3—C14—C15 179.8 (2)
C5—C3—C4—N 110.3 (2) C12—C13—C14—O3 179.0 (2)
C2—C3—C5—C6 7.3 (3) C12—C13—C14—C15 −0.8 (4)
C4—C3—C5—C6 −110.3 (2) O3—C14—C15—O4 0.8 (4)
C2—C3—C5—C10 −173.59 (19) C13—C14—C15—O4 −179.3 (2)
C4—C3—C5—C10 68.8 (2) O3—C14—C15—C16 −177.9 (2)
C10—C5—C6—C7 −0.9 (3) C13—C14—C15—C16 2.0 (4)
C3—C5—C6—C7 178.2 (2) O4—C15—C16—C17 179.8 (2)
C5—C6—C7—C8 −0.3 (3) C14—C15—C16—C17 −1.5 (4)
C6—C7—C8—C9 1.4 (4) C15—C16—C17—C12 −0.3 (4)
C6—C7—C8—O2 −179.7 (2) C13—C12—C17—C16 1.4 (4)
C7—C8—C9—C10 −1.2 (4) C11—C12—C17—C16 −177.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H1···O1i 0.86 2.09 2.948 (2) 172
O2—H2···O1ii 0.82 1.95 2.675 (2) 147
O4—H4···O2iii 0.82 2.00 2.721 (2) 147

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2053).

References

  1. Anh, N. T. H., Sung, T. V., Porzel, A., Frankeb, K. & Wessjohann, L. A. (2003). Phytochemistry, 62, 1153–1158. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kou, J. P., Yu, B. Y. & Xu, Q. (2005). Vasc. Pharmcol, 43, 157–163.
  5. Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yu, B. Y. (2007). Chin. J. Nat. Med. , 43, 10–14.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008581/lx2053sup1.cif

e-64-0o814-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008581/lx2053Isup2.hkl

e-64-0o814-Isup2.hkl (134.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES