Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 10;64(Pt 5):o818. doi: 10.1107/S1600536808009070

1-Methyl-5-(4-methyl­phen­yl)-3-oxo­cyclo­hexane-1-carbonitrile

R T Sabapathy Mohan a, S Kamatchi a, M Subramanyam b, A Thiruvalluvar b,*, A Linden c
PMCID: PMC2961276  PMID: 21202308

Abstract

In the title mol­ecule, C15H17NO, the cyclo­hexane ring adopts a chair conformation. The cyano and methyl groups at position 1 have axial and equatorial orientations, respectively. The benzene ring has an equatorial orientation. A C—H⋯π inter­action involving the benzene ring is found in the crystal structure.

Related literature

Subramanyam et al. (2007) have reported the crystal structure of 3-cyano-3-methyl-5-phenyl­cyclo­hexane, in which the cyclo­hexane ring adopts a chair conformation.graphic file with name e-64-0o818-scheme1.jpg

Experimental

Crystal data

  • C15H17NO

  • M r = 227.30

  • Monoclinic, Inline graphic

  • a = 23.4475 (5) Å

  • b = 6.0370 (1) Å

  • c = 21.0740 (5) Å

  • β = 123.267 (1)°

  • V = 2494.22 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 160 (1) K

  • 0.25 × 0.20 × 0.10 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 37687 measured reflections

  • 3640 independent reflections

  • 2682 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.170

  • S = 1.08

  • 3640 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009070/wn2249sup1.cif

e-64-0o818-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009070/wn2249Isup2.hkl

e-64-0o818-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACgi 0.99 2.61 3.5425 (15) 157

Symmetry code: (i) Inline graphic. Cg is the centroid of the benzene ring.

Acknowledgments

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007].

supplementary crystallographic information

Comment

The title compound has been analysed as part of our crystallographic studies on substituted cyclohexanes (Subramanyam et al., 2007). Its molecular structure, with atomic numbering scheme, is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 1 have axial and equatorial orientations respectively. The benzene ring at position 5 has an equatorial orientation. A C4—H4A···π(-x, y, 1/2 - z) interaction involving the benzene ring is found in the structure. No classical hydrogen bonds are found in the crystal structure.

Experimental

A mixture of 5-4'-methylphenyl-3-methylcyclohex-2-enone (4.00 g, 0.02 mol), potassium cyanide (2.60 g, 0.04 mol), ammonium chloride (1.59 g, 0.03 mol), dimethylformamide (50 ml) and water (2 ml) was heated with stirring for 16-18 h at 353 K. The reaction mixture was cooled to room temperature and poured into water. The product was extracted with CH2Cl2 (3x10 ml) and the organic layer was dried, evaporated and purified by column chromatography (hexane-EtOAc, 4.5:1 v/v). The yield of the isolated product was 3.40 g (75%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for Csp2, 0.98 Å for methyl C, 0.99 Å for methylene C and 1.00 Å for methine C; Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl and 1.2 for all other C atoms

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.

Crystal data

C15H17NO F000 = 976
Mr = 227.30 Dx = 1.211 Mg m3
Monoclinic, C2/c Melting point: 376 K
Hall symbol: -C 2yc Mo Kα radiation λ = 0.71073 Å
a = 23.4475 (5) Å Cell parameters from 3933 reflections
b = 6.0370 (1) Å θ = 2.0–30.0º
c = 21.0740 (5) Å µ = 0.08 mm1
β = 123.267 (1)º T = 160 (1) K
V = 2494.22 (9) Å3 Tablet, colourless
Z = 8 0.25 × 0.20 × 0.10 mm

Data collection

Nonius KappaCCD area-detector diffractometer 3640 independent reflections
Radiation source: Nonius FR590 sealed tube generator 2682 reflections with I > 2σ(I)
Monochromator: horizontally mounted graphite crystal Rint = 0.054
Detector resolution: 9 pixels mm-1 θmax = 30.1º
T = 160(1) K θmin = 2.1º
φ and ω scans with κ offsets h = 0→32
Absorption correction: none k = 0→8
37687 measured reflections l = −29→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.170   w = 1/[σ2(Fo2) + (0.0889P)2 + 1.0674P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3640 reflections Δρmax = 0.42 e Å3
154 parameters Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. Solvent used: ? Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.608 (1) Frames collected: 469 Seconds exposure per frame: 68 Degrees rotation per frame: 1.7 Crystal-Detector distance (mm): 30.0
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 −0.15528 (6) 0.46344 (19) 0.25177 (7) 0.0415 (4)
N12 −0.08326 (7) 0.6151 (2) 0.47679 (8) 0.0396 (4)
C1 −0.11894 (7) 0.9214 (2) 0.37288 (8) 0.0257 (4)
C2 −0.16638 (7) 0.8175 (3) 0.29352 (8) 0.0301 (4)
C3 −0.13059 (7) 0.6453 (2) 0.27576 (7) 0.0284 (4)
C4 −0.06263 (7) 0.7130 (2) 0.28980 (8) 0.0285 (4)
C5 −0.01555 (6) 0.8211 (2) 0.36851 (7) 0.0235 (3)
C6 −0.05364 (7) 1.0065 (2) 0.37989 (8) 0.0257 (4)
C11 −0.15578 (8) 1.1085 (3) 0.38596 (10) 0.0358 (5)
C12 −0.09953 (7) 0.7479 (2) 0.43103 (8) 0.0283 (4)
C15 0.24199 (7) 1.0891 (3) 0.40745 (9) 0.0366 (5)
C51 0.05077 (6) 0.8959 (2) 0.37806 (7) 0.0234 (3)
C52 0.10525 (7) 0.7488 (2) 0.40770 (7) 0.0268 (4)
C53 0.16606 (7) 0.8088 (2) 0.41545 (8) 0.0288 (4)
C54 0.17508 (7) 1.0191 (3) 0.39554 (8) 0.0283 (4)
C55 0.12020 (7) 1.1653 (2) 0.36508 (9) 0.0321 (4)
C56 0.05907 (7) 1.1049 (2) 0.35635 (9) 0.0308 (4)
H2A −0.20592 0.74844 0.29089 0.0361*
H2B −0.18388 0.93583 0.25469 0.0361*
H4A −0.07029 0.81889 0.24998 0.0341*
H4B −0.03970 0.58069 0.28600 0.0341*
H5 −0.00387 0.70502 0.40771 0.0282*
H6A −0.06599 1.12360 0.34155 0.0308*
H6B −0.02313 1.07305 0.43072 0.0308*
H11A −0.16873 1.22489 0.34797 0.0537*
H11B −0.12531 1.17052 0.43686 0.0537*
H11C −0.19680 1.04942 0.38141 0.0537*
H15A 0.27435 0.96550 0.42915 0.0549*
H15B 0.26039 1.21551 0.44228 0.0549*
H15C 0.23475 1.13160 0.35866 0.0549*
H52 0.10086 0.60508 0.42290 0.0321*
H53 0.20209 0.70396 0.43470 0.0345*
H55 0.12464 1.30917 0.34997 0.0384*
H56 0.02242 1.20775 0.33526 0.0370*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0412 (6) 0.0397 (6) 0.0472 (7) −0.0142 (5) 0.0266 (5) −0.0148 (5)
N12 0.0409 (7) 0.0425 (8) 0.0396 (7) −0.0060 (6) 0.0248 (6) 0.0051 (6)
C1 0.0254 (6) 0.0250 (6) 0.0306 (7) −0.0027 (5) 0.0178 (6) −0.0022 (5)
C2 0.0233 (6) 0.0366 (8) 0.0285 (7) −0.0015 (6) 0.0130 (5) −0.0014 (6)
C3 0.0273 (7) 0.0332 (8) 0.0231 (7) −0.0052 (5) 0.0129 (5) −0.0028 (5)
C4 0.0283 (7) 0.0303 (7) 0.0304 (7) −0.0032 (5) 0.0184 (6) −0.0045 (5)
C5 0.0224 (6) 0.0230 (6) 0.0265 (6) −0.0008 (5) 0.0144 (5) 0.0021 (5)
C6 0.0258 (6) 0.0246 (7) 0.0301 (7) −0.0042 (5) 0.0176 (6) −0.0030 (5)
C11 0.0364 (8) 0.0305 (8) 0.0515 (9) −0.0015 (6) 0.0311 (7) −0.0045 (7)
C12 0.0258 (6) 0.0329 (7) 0.0303 (7) −0.0071 (5) 0.0181 (6) −0.0048 (6)
C15 0.0275 (7) 0.0443 (9) 0.0427 (9) −0.0070 (6) 0.0222 (7) −0.0033 (7)
C51 0.0229 (6) 0.0248 (6) 0.0241 (6) −0.0018 (5) 0.0140 (5) 0.0003 (5)
C52 0.0258 (6) 0.0264 (7) 0.0272 (7) −0.0003 (5) 0.0140 (5) 0.0040 (5)
C53 0.0232 (6) 0.0332 (7) 0.0281 (7) 0.0030 (5) 0.0128 (5) 0.0034 (6)
C54 0.0249 (6) 0.0340 (7) 0.0289 (7) −0.0052 (5) 0.0167 (6) −0.0035 (5)
C55 0.0346 (7) 0.0252 (7) 0.0450 (9) −0.0036 (6) 0.0273 (7) 0.0009 (6)
C56 0.0296 (7) 0.0258 (7) 0.0428 (8) 0.0033 (5) 0.0235 (7) 0.0056 (6)

Geometric parameters (Å, °)

O3—C3 1.2145 (17) C2—H2A 0.9900
N12—C12 1.1466 (19) C2—H2B 0.9900
C1—C2 1.545 (2) C4—H4A 0.9900
C1—C6 1.543 (3) C4—H4B 0.9900
C1—C11 1.536 (3) C5—H5 1.0000
C1—C12 1.4812 (19) C6—H6A 0.9900
C2—C3 1.507 (2) C6—H6B 0.9900
C3—C4 1.509 (3) C11—H11A 0.9800
C4—C5 1.5450 (19) C11—H11B 0.9800
C5—C6 1.531 (2) C11—H11C 0.9800
C5—C51 1.523 (2) C15—H15A 0.9800
C15—C54 1.507 (3) C15—H15B 0.9800
C51—C52 1.391 (2) C15—H15C 0.9800
C51—C56 1.3917 (18) C52—H52 0.9500
C52—C53 1.391 (3) C53—H53 0.9500
C53—C54 1.389 (2) C55—H55 0.9500
C54—C55 1.393 (2) C56—H56 0.9500
C55—C56 1.390 (3)
O3···H6Ai 2.8000 H4A···C55vii 2.9200
O3···H11Ai 2.6400 H4A···C56vii 2.9500
O3···H15Cii 2.8500 H4B···C52 3.1000
O3···H55ii 2.7700 H4B···H56i 2.5700
N12···H11Bi 2.8200 H5···C12 2.5600
N12···H5iii 2.8900 H5···H52 2.3700
N12···H6Biv 2.8700 H5···N12iii 2.8900
N12···H52iii 2.7100 H6A···O3ix 2.8000
C4···C12 3.532 (2) H6A···C56 2.7800
C12···C4 3.532 (2) H6A···H2B 2.5900
C12···C15v 3.598 (3) H6A···H11A 2.5600
C15···C12vi 3.598 (3) H6A···H56 2.2100
C6···H56 2.7200 H6B···C56 3.0900
C12···H5 2.5600 H6B···H11B 2.5400
C12···H6Biv 2.9600 H6B···N12iv 2.8700
C15···H2Bvii 3.0500 H6B···C12iv 2.9600
C51···H4Avii 3.0100 H11A···O3ix 2.6400
C52···H4B 3.1000 H11A···H2B 2.5000
C52···H55i 3.0600 H11A···H6A 2.5600
C52···H4Avii 2.9800 H11B···N12ix 2.8200
C52···H11Biv 3.0800 H11B···H6B 2.5400
C53···H4Avii 2.9300 H11B···C52iv 3.0800
C53···H53viii 2.9700 H11C···H2A 2.5600
C54···H4Avii 2.9400 H15A···H53 2.3700
C55···H52ix 3.0600 H15C···O3x 2.8500
C55···H4Avii 2.9200 H15C···H2Bvii 2.3200
C56···H6A 2.7800 H15C···H2Avi 2.5800
C56···H6B 3.0900 H52···C55i 3.0600
C56···H4Avii 2.9500 H52···H5 2.3700
H2A···H11C 2.5600 H52···N12iii 2.7100
H2A···H15Cv 2.5800 H53···H15A 2.3700
H2B···H6A 2.5900 H53···C53viii 2.9700
H2B···H11A 2.5000 H53···H53viii 2.4800
H2B···C15vii 3.0500 H55···C52ix 3.0600
H2B···H15Cvii 2.3200 H55···O3x 2.7700
H4A···C51vii 3.0100 H56···C6 2.7200
H4A···C52vii 2.9800 H56···H4Bix 2.5700
H4A···C53vii 2.9300 H56···H6A 2.2100
H4A···C54vii 2.9400
C2—C1—C6 109.04 (13) C3—C4—H4B 109.00
C2—C1—C11 110.55 (14) C5—C4—H4A 109.00
C2—C1—C12 108.69 (11) C5—C4—H4B 109.00
C6—C1—C11 111.35 (12) H4A—C4—H4B 108.00
C6—C1—C12 108.53 (13) C4—C5—H5 108.00
C11—C1—C12 108.62 (14) C6—C5—H5 108.00
C1—C2—C3 112.38 (13) C51—C5—H5 108.00
O3—C3—C2 121.60 (17) C1—C6—H6A 109.00
O3—C3—C4 122.51 (15) C1—C6—H6B 109.00
C2—C3—C4 115.89 (12) C5—C6—H6A 109.00
C3—C4—C5 112.38 (13) C5—C6—H6B 109.00
C4—C5—C6 110.02 (12) H6A—C6—H6B 108.00
C4—C5—C51 110.09 (12) C1—C11—H11A 109.00
C6—C5—C51 113.81 (11) C1—C11—H11B 109.00
C1—C6—C5 112.03 (11) C1—C11—H11C 109.00
N12—C12—C1 178.70 (18) H11A—C11—H11B 109.00
C5—C51—C52 119.32 (12) H11A—C11—H11C 109.00
C5—C51—C56 122.83 (13) H11B—C11—H11C 109.00
C52—C51—C56 117.83 (15) C54—C15—H15A 109.00
C51—C52—C53 121.07 (12) C54—C15—H15B 109.00
C52—C53—C54 121.23 (14) C54—C15—H15C 109.00
C15—C54—C53 121.54 (16) H15A—C15—H15B 109.00
C15—C54—C55 120.88 (16) H15A—C15—H15C 109.00
C53—C54—C55 117.58 (17) H15B—C15—H15C 109.00
C54—C55—C56 121.31 (13) C51—C52—H52 119.00
C51—C56—C55 120.95 (14) C53—C52—H52 119.00
C1—C2—H2A 109.00 C52—C53—H53 119.00
C1—C2—H2B 109.00 C54—C53—H53 119.00
C3—C2—H2A 109.00 C54—C55—H55 119.00
C3—C2—H2B 109.00 C56—C55—H55 119.00
H2A—C2—H2B 108.00 C51—C56—H56 120.00
C3—C4—H4A 109.00 C55—C56—H56 120.00
C6—C1—C2—C3 52.74 (16) C4—C5—C51—C52 −88.85 (14)
C11—C1—C2—C3 175.47 (14) C4—C5—C51—C56 89.28 (15)
C12—C1—C2—C3 −65.40 (19) C6—C5—C51—C52 147.10 (12)
C2—C1—C6—C5 −58.85 (15) C6—C5—C51—C56 −34.77 (17)
C11—C1—C6—C5 178.91 (12) C5—C51—C52—C53 178.29 (12)
C12—C1—C6—C5 59.39 (14) C56—C51—C52—C53 0.1 (2)
C1—C2—C3—O3 130.73 (15) C5—C51—C56—C55 −179.06 (13)
C1—C2—C3—C4 −49.13 (17) C52—C51—C56—C55 −0.9 (2)
O3—C3—C4—C5 −131.91 (13) C51—C52—C53—C54 1.5 (2)
C2—C3—C4—C5 47.96 (15) C52—C53—C54—C15 176.87 (13)
C3—C4—C5—C6 −51.08 (14) C52—C53—C54—C55 −2.2 (2)
C3—C4—C5—C51 −177.30 (10) C15—C54—C55—C56 −177.71 (14)
C4—C5—C6—C1 58.21 (15) C53—C54—C55—C56 1.3 (2)
C51—C5—C6—C1 −177.70 (11) C54—C55—C56—C51 0.2 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x, y−1, −z+1/2; (iii) −x, −y+1, −z+1; (iv) −x, −y+2, −z+1; (v) x−1/2, y−1/2, z; (vi) x+1/2, y+1/2, z; (vii) −x, y, −z+1/2; (viii) −x+1/2, −y+3/2, −z+1; (ix) x, y+1, z; (x) −x, y+1, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···Cgvii 0.99 2.61 3.5425 (15) 157

Symmetry codes: (vii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2249).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  3. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  6. Subramanyam, M., Thiruvalluvar, A., Sabapathy Mohan, R. T. & Kamatchi, S. (2007). Acta Cryst. E63, o2715–o2716.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009070/wn2249sup1.cif

e-64-0o818-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009070/wn2249Isup2.hkl

e-64-0o818-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES