Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 2;64(Pt 5):m619. doi: 10.1107/S1600536808008659

Tetra­aqua­bis(biuret-κ2 O,O′)yttrium(III) trichloride

William T A Harrison a,*
PMCID: PMC2961277  PMID: 21202174

Abstract

In the title compound, [Y(C2H5N3O2)2(H2O)4]Cl3, the Y3+ ion (site symmetry 2) is bonded to eight O atoms (arising from two O,O′-bidentate biuret mol­ecules and four water mol­ecules) in a distorted square-anti­prismatic arrangement. A network of N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds help to establish the packing, leading to a three-dimensional network. One of the chloride ions has site symmetry 2.

Related literature

For related structures, see: Carugo et al. (1992); Haddad (1987, 1988). For related literature, see: Bernstein et al. (1995). For valence-sum calculations, see: Brese & O’Keeffe (1991).graphic file with name e-64-0m619-scheme1.jpg

Experimental

Crystal data

  • [Y(C2H5N3O2)2(H2O)4]Cl3

  • M r = 473.50

  • Monoclinic, Inline graphic

  • a = 7.6510 (4) Å

  • b = 13.2534 (7) Å

  • c = 17.2547 (9) Å

  • β = 100.817 (1)°

  • V = 1718.57 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.90 mm−1

  • T = 293 (2) K

  • 0.36 × 0.24 × 0.14 mm

Data collection

  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.340, T max = 0.611 (expected range = 0.322–0.579)

  • 8075 measured reflections

  • 3105 independent reflections

  • 2464 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.059

  • S = 0.98

  • 3105 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008659/tk2260sup1.cif

e-64-0m619-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008659/tk2260Isup2.hkl

e-64-0m619-Isup2.hkl (152.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Y1—O1 2.3157 (11)
Y1—O2 2.3349 (11)
Y1—O4 2.3536 (12)
Y1—O3 2.3660 (10)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.10 2.9111 (18) 157
N1—H2⋯Cl1ii 0.86 2.39 3.1897 (17) 155
N2—H3⋯Cl1ii 0.86 2.53 3.3184 (14) 153
N3—H4⋯Cl1iii 0.86 2.54 3.3633 (15) 161
N3—H5⋯Cl1iv 0.86 2.54 3.3232 (15) 151
O3—H6⋯Cl1v 0.80 2.39 3.1607 (12) 161
O3—H7⋯Cl2vi 0.79 2.27 3.0504 (12) 168
O4—H8⋯Cl1 0.75 2.45 3.2028 (13) 177
O4—H9⋯Cl2 0.80 2.40 3.1238 (12) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

No complexes of yttrium(III) with biuret (biur), H2N—CO—NH—CO—NH2 (or C2H5N3O2) have been structurally characterized. The structures of two samarium-biuret complexes, Sm(biur)4.(NO3)3 (Haddad, 1987) and Sm(biur)4.(ClO4)3 (Haddad, 1988) have been described. In both cases, an SmO8 square antiprismatic coordination arises for the metal ion. Based on X-ray photographs, it was suggested that all the Ln(biur)4.(NO3)3 and Ln(biur)4.(ClO4)3 compounds are isostructural with their samarium prototypes. In this paper, we describe the synthesis and structure of the title compound, (I).

Compound (I) is an ionic salt containing a new [Y(biur)2(H2O)4]3+ complex ion. The complete complex ion is generated by crystallographic 2-fold symmetry, with the Y atom lying on the rotation axis. Two uncoordinated chloride ions, one of which has crystallographic site symmetry 2, complete the structure of (I), Fig. 1.

The resulting YO8 polyhedral geometry in (I) (Table 1) is a distorted square antiprism (Fig. 2). The nominal square face formed by atoms O1, O2, O1i and O2i (i = -x, y, 3/2 - z) is reasonably regular, but the second face formed by the four water molecules (O3, O4, O3i and O4i) is much more distorted, and the diagonal O3···O3i and O4···O4i distances of 4.223 (2)Å and 3.5197 (19) Å, respectively, are very different. The Y1 atom deviates from the mean planes of O1/O2/O1i/O2i and O3/O4/O3i/O4i by 1.1616 (8) Å and 1.3151 (9) Å, respectively. The two O atom mean planes are constrained to be parallel by symmetry. The bond valence sum (Brese & O'Keeffe, 1991) for Y1 of 3.34 in (I) indicates that its valence requirement is easily satisfied by this geometry.

The O,O-bidenate coordination of the biuret molecule to the yttrium ion in (I) results in a six-membered chelate ring that is non-planar. As noted previously (Carugo et al., 1992), the biuret molecule can be regarded as two planar amide fragments linked by the NH bridge. Here, the dihedral angle betwen the N1/C1/O1/N2 and N2/C2/O2/N3 units is 5.06 (10)°. The yttrium cation deviates from the N1/C1/O1/N2 and N2/C2/O2/N3 mean planes by 0.894 (4) Å and 0.606 (4) Å, respectively.

The component species in (I) are linked by a dense array of N—H···O, N—H···Cl and O—H···Cl hydrogen bonds (Table 2) resulting in a three-dimensional network. Of note is the N—H···O hydrogen bond, which results in [100] chains (Fig. 3) of cations, in which R22(8) loops (Bernstein et al., 1995) linking the molecules are apparent.

Experimental

0.1 M Aqueous solutions of YCl3 (10 ml) and biuret (10 ml) were mixed and a small quantity of dilute hydrochloric acid was added, to result in a colourless solution. Colourless blocks of (I) grew over several days as the water slowly evaporated.

Refinement

The N-bound hydrogen atoms were geometrically placed (N—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(N). The water H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O); see Table 2 for O-H distances.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x, y, 3/2 - z.

Fig. 2.

Fig. 2.

Detail of (I) showing the distorted square antiprismatic coordination of the Y atom. Symmetry code: (i) -x, y, 3/2 - z.

Fig. 3.

Fig. 3.

Fragment of a [100] chain of cations in (I) with the hydrogen bonds indicated by double-dashed lines. Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) x + 1, y, z.

Crystal data

[Y(C2H5N3O2)2(H2O)4]Cl3 F000 = 952
Mr = 473.50 Dx = 1.830 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3637 reflections
a = 7.6510 (4) Å θ = 3.1–32.4º
b = 13.2534 (7) Å µ = 3.90 mm1
c = 17.2547 (9) Å T = 293 (2) K
β = 100.817 (1)º Block, colourless
V = 1718.57 (16) Å3 0.36 × 0.24 × 0.14 mm
Z = 4

Data collection

Bruker SMART1000 CCD diffractometer 3105 independent reflections
Radiation source: fine-focus sealed tube 2464 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.019
T = 293(2) K θmax = 32.6º
ω scans θmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 1999) h = −11→11
Tmin = 0.340, Tmax = 0.611 k = −20→19
8075 measured reflections l = −16→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difmap (O-H) and geom (N-H)
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.059   w = 1/[σ2(Fo2) + (0.0303P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
3105 reflections Δρmax = 0.37 e Å3
101 parameters Δρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Y1 0.0000 0.107273 (15) 0.7500 0.02386 (6)
Cl1 −0.04205 (5) 0.33346 (3) 0.50811 (2) 0.03905 (10)
Cl2 0.5000 0.29705 (5) 0.7500 0.03992 (14)
O1 0.25038 (14) 0.02884 (9) 0.72093 (7) 0.0348 (3)
O2 −0.08317 (13) 0.01042 (8) 0.63600 (7) 0.0329 (2)
N1 0.45654 (18) −0.01014 (13) 0.64850 (10) 0.0476 (4)
H1 0.5399 0.0182 0.6817 0.057*
H2 0.4804 −0.0382 0.6068 0.057*
N2 0.17105 (17) −0.05973 (11) 0.60525 (8) 0.0332 (3)
H3 0.2113 −0.0980 0.5724 0.040*
N3 −0.10477 (19) −0.11253 (11) 0.54451 (9) 0.0410 (3)
H4 −0.2191 −0.1099 0.5351 0.049*
H5 −0.0506 −0.1546 0.5193 0.049*
C1 0.2922 (2) −0.01064 (12) 0.66153 (10) 0.0308 (3)
C2 −0.0118 (2) −0.05156 (11) 0.59806 (9) 0.0295 (3)
O3 −0.23875 (15) 0.18780 (9) 0.66560 (7) 0.0377 (3)
H6 −0.2731 0.1747 0.6201 0.045*
H7 −0.3170 0.2159 0.6812 0.045*
O4 0.11867 (16) 0.22520 (10) 0.67195 (8) 0.0519 (4)
H8 0.0828 0.2492 0.6326 0.062*
H9 0.2176 0.2465 0.6742 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Y1 0.02161 (9) 0.02849 (10) 0.02041 (9) 0.000 0.00117 (7) 0.000
Cl1 0.0364 (2) 0.0491 (2) 0.0297 (2) 0.00110 (17) 0.00118 (17) −0.00610 (18)
Cl2 0.0316 (3) 0.0479 (3) 0.0418 (3) 0.000 0.0107 (2) 0.000
O1 0.0255 (5) 0.0467 (6) 0.0309 (6) 0.0049 (5) 0.0014 (5) −0.0080 (5)
O2 0.0282 (5) 0.0358 (6) 0.0327 (6) 0.0034 (5) 0.0004 (5) −0.0092 (5)
N1 0.0266 (7) 0.0778 (11) 0.0394 (8) −0.0078 (7) 0.0089 (6) −0.0204 (8)
N2 0.0266 (6) 0.0415 (7) 0.0315 (7) 0.0016 (6) 0.0053 (5) −0.0088 (6)
N3 0.0321 (7) 0.0459 (8) 0.0426 (8) −0.0014 (6) 0.0012 (6) −0.0179 (7)
C1 0.0271 (7) 0.0350 (8) 0.0293 (8) 0.0013 (6) 0.0025 (6) 0.0004 (7)
C2 0.0290 (7) 0.0320 (7) 0.0261 (7) −0.0009 (6) 0.0021 (6) 0.0012 (6)
O3 0.0353 (6) 0.0498 (7) 0.0253 (6) 0.0145 (5) −0.0011 (5) −0.0026 (5)
O4 0.0390 (7) 0.0677 (9) 0.0436 (7) −0.0157 (6) −0.0061 (6) 0.0281 (7)

Geometric parameters (Å, °)

Y1—O1i 2.3157 (11) N1—H2 0.8600
Y1—O1 2.3157 (11) N2—C1 1.374 (2)
Y1—O2 2.3349 (11) N2—C2 1.385 (2)
Y1—O2i 2.3349 (11) N2—H3 0.8600
Y1—O4i 2.3536 (12) N3—C2 1.329 (2)
Y1—O4 2.3536 (12) N3—H4 0.8600
Y1—O3i 2.3660 (10) N3—H5 0.8600
Y1—O3 2.3660 (10) O3—H6 0.7990
O1—C1 1.2450 (19) O3—H7 0.7934
O2—C2 1.2392 (18) O4—H8 0.7541
N1—C1 1.318 (2) O4—H9 0.8023
N1—H1 0.8600
O1i—Y1—O1 126.66 (6) O4—Y1—O3 71.61 (4)
O1i—Y1—O2 80.21 (4) O3i—Y1—O3 126.37 (6)
O1—Y1—O2 71.12 (4) C1—O1—Y1 135.89 (10)
O1i—Y1—O2i 71.12 (4) C2—O2—Y1 137.05 (10)
O1—Y1—O2i 80.21 (4) C1—N1—H1 120.0
O2—Y1—O2i 113.30 (6) C1—N1—H2 120.0
O1i—Y1—O4i 75.55 (5) H1—N1—H2 120.0
O1—Y1—O4i 147.74 (4) C1—N2—C2 124.22 (14)
O2—Y1—O4i 140.68 (4) C1—N2—H3 117.9
O2i—Y1—O4i 87.51 (4) C2—N2—H3 117.9
O1i—Y1—O4 147.74 (4) C2—N3—H4 120.0
O1—Y1—O4 75.55 (5) C2—N3—H5 120.0
O2—Y1—O4 87.51 (4) H4—N3—H5 120.0
O2i—Y1—O4 140.68 (4) O1—C1—N1 122.63 (15)
O4i—Y1—O4 96.78 (8) O1—C1—N2 122.49 (14)
O1i—Y1—O3i 130.07 (4) N1—C1—N2 114.87 (15)
O1—Y1—O3i 76.19 (4) O2—C2—N3 122.60 (14)
O2—Y1—O3i 145.42 (4) O2—C2—N2 122.84 (14)
O2i—Y1—O3i 70.89 (4) N3—C2—N2 114.49 (15)
O4i—Y1—O3i 71.61 (4) Y1—O3—H6 125.5
O4—Y1—O3i 73.53 (4) Y1—O3—H7 123.2
O1i—Y1—O3 76.19 (4) H6—O3—H7 107.8
O1—Y1—O3 130.07 (4) Y1—O4—H8 133.0
O2—Y1—O3 70.89 (4) Y1—O4—H9 132.0
O2i—Y1—O3 145.42 (4) H8—O4—H9 94.3
O4i—Y1—O3 73.53 (4)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1ii 0.86 2.10 2.9111 (18) 157
N1—H2···Cl1iii 0.86 2.39 3.1897 (17) 155
N2—H3···Cl1iii 0.86 2.53 3.3184 (14) 153
N3—H4···Cl1iv 0.86 2.54 3.3633 (15) 161
N3—H5···Cl1v 0.86 2.54 3.3232 (15) 151
O3—H6···Cl1vi 0.80 2.39 3.1607 (12) 161
O3—H7···Cl2vii 0.79 2.27 3.0504 (12) 168
O4—H8···Cl1 0.75 2.45 3.2028 (13) 177
O4—H9···Cl2 0.80 2.40 3.1238 (12) 150

Symmetry codes: (ii) −x+1, y, −z+3/2; (iii) x+1/2, y−1/2, z; (iv) x−1/2, y−1/2, z; (v) −x, −y, −z+1; (vi) −x−1/2, −y+1/2, −z+1; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2260).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  3. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Carugo, O., Poli, G. & Manzoni, L. (1992). Acta Cryst. C48, 2013–2016.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Haddad, S. F. (1987). Acta Cryst. C43, 1882–1885.
  7. Haddad, S. F. (1988). Acta Cryst. C44, 815–818.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008659/tk2260sup1.cif

e-64-0m619-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008659/tk2260Isup2.hkl

e-64-0m619-Isup2.hkl (152.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES