Abstract
The title compound, [Pd(CH4N2S)4](SCN)2, consists of complex [Pd(TU)4]2+ [TU = thiourea, SC(NH2)2] cations and thiocyanate counter-anions. The PdII cation is situated on an inversion centre and exhibits an almost square-planar coordination by the S atoms of the TU ligands. The complex cations are connected through the thiocyanate ions via N—H⋯N [2.922 (3)–3.056 (3) Å] and N—H⋯S [3.369 (2)–3.645 (2) Å] hydrogen bonds.
Related literature
For the coordination chemistry of thiones and thionates, and for biomolecules possessing thioamido binding sites, see: Akrivos (2001 ▶); Raper (1996 ▶); Cusumano et al. (2005 ▶). For other structures listed in the Cambridge Structural Database (Allen, 2002 ▶) that contain transition metals and thiourea ligands, see: Bott et al. (1998 ▶); Dupa & Krebs (1973 ▶); Gale et al. (2006 ▶); Hunt et al. (1979 ▶); Taylor et al. (1974 ▶).
Experimental
Crystal data
[Pd(CH4N2S)4](SCN)2
M r = 527.05
Monoclinic,
a = 8.136 (3) Å
b = 12.966 (5) Å
c = 8.810 (3) Å
β = 91.12 (5)°
V = 929.3 (6) Å3
Z = 2
Mo Kα radiation
μ = 1.69 mm−1
T = 123 (2) K
0.30 × 0.25 × 0.22 mm
Data collection
Rigaku/MSC Mercury CCD diffractometer
Absorption correction: integration (NUMABS; Higashi, 1999 ▶) T min = 0.632, T max = 0.708
7301 measured reflections
2117 independent reflections
2040 reflections with I > 2σ(I)
R int = 0.025
Refinement
R[F 2 > 2σ(F 2)] = 0.022
wR(F 2) = 0.043
S = 1.35
2117 reflections
106 parameters
H-atom parameters constrained
Δρmax = 0.66 e Å−3
Δρmin = −0.48 e Å−3
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001 ▶); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004 ▶); program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPII (Johnson, 1976 ▶); software used to prepare material for publication: SHELXL97 and TEXSAN.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801088X/wm2176sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680801088X/wm2176Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Pd1—S2 | 2.3302 (11) |
| Pd1—S1 | 2.3448 (8) |
| S2—Pd1—S2i | 180 |
| S2—Pd1—S1 | 87.86 (3) |
| S2i—Pd1—S1 | 92.14 (3) |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1B⋯S3 | 0.88 | 2.58 | 3.369 (2) | 150 |
| N1—H1A⋯S2ii | 0.88 | 2.60 | 3.466 (2) | 166 |
| N2—H2A⋯S3iii | 0.88 | 2.78 | 3.615 (2) | 158 |
| N2—H2B⋯N5iv | 0.88 | 2.04 | 2.922 (3) | 178 |
| N3—H3B⋯S3 | 0.88 | 2.82 | 3.645 (2) | 157 |
| N3—H3A⋯S1v | 0.88 | 2.73 | 3.531 (2) | 153 |
| N4—H4B⋯S3vi | 0.88 | 2.61 | 3.482 (2) | 173 |
| N4—H4A⋯N5vii | 0.88 | 2.50 | 3.056 (3) | 121 |
Symmetry codes: (ii)
; (iii)
; (iv)
; (v)
; (vi)
; (vii)
.
Acknowledgments
M. K. Rauf is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme.
supplementary crystallographic information
Comment
Thiourea (TU), SC(NH2)2, is a simple ambidentate ligand capable of binding to transition metals via the sulfur or the nitrogen atoms. Complex formation with such ligands provides model systems for the interaction of naturally occurring biomolecules possessing thioamido binding sites (Akrivos, 2001; Raper, 1996; Cusumano et al., 2005). The ability of TU to form stable adducts with a variety of transition metals, e.g. Cu, Ag, Au and Pt, is well established. The crystal structures of several such complexes have been determined (Bott et al., 1998; Gale et al., 2006). These studies demonstrate that TU can act both as a terminal ligand in monomeric complexes (Hunt et al., 1979), or as a bridging ligand in polymeric complexes (Taylor et al., 1974). In order to investigate other transition metal complexes of thiourea, we report here the crystal structure of a monomeric complex, viz. [Pd(SC(NH2)2)4](SCN)2, (I).
The crystal structure of (I) is composed of complex [Pd(TU)4]+2 cations and thiocyanate counter anions. The Pd2+ ion is situated on an inversion centre and, as expected for a d8 system, has an almost square planar environment with cis angles (S—Pd—S) ranging from 87.87 (2) to 92.13 (2)°, and trans angles (S—Pd—S) of 180.0°. The TU ligands are coordinated to PdII at almost equal distances. The Pd—S bond lengths of 2.3302 (8) and 2.3448 (7) Å (Table 1) are comparable to those of similar compounds reported in the literature (Gale et al., 2006). In the cationic complex, TU ligands behave as S–donors and all four ligands are binding in a terminal mode. Therefore no bridging of metal centers are found as it is observed in some other metal-thiourea compounds, for example, [Cu4(TU)7(SO4)2]NO3 (Bott et al., 1998) and [Ag2(TU)6](ClO4)2 (Dupa & Krebs, 1973). The C—S and C—N bond lengths of 1.723 (2) Å and 1.326 (3) Å, respectively, agree with those of coordinated thiourea molecules reported in the Cambridge Crystallographic database (Allen, 2002). In the crystal structure, the building units are connected via hydrogen bonds of the type N—H···N [2.922 (3)–3.058 (3) Å] and N—H···S [3.370 (2)–3.646 (2) Å] (see Table 2).
Experimental
Crystals of (I) were obtained by adding 4 equivalents of thiourea in 15 ml methanol to a solution of K2[PdCl2] (0.326 g) in 15 ml of water and stirring for one h. The resulting orange solution was kept after filtration at room temperature for three d. Orange crystals of (I) were obtained on slow evaporation. The counter anion SCN- has apparently been introduced due to impurities (presumably KSCN), that were present in thiourea.
Refinement
The H atoms attached to the N atoms were placed in idealized positions and refined with a N—H distance of 0.88 Å and Uiso(H) = 1.2Ueq(N).
Figures
Fig. 1.
Molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level. Unlabelled atoms and atoms labelled by superscript i) are related by the symmetry operator i) 1-x, y, z.
Crystal data
| [Pd(CH4N2S)4](SCN)2 | F000 = 528 |
| Mr = 527.05 | Dx = 1.884 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71070 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3103 reflections |
| a = 8.136 (3) Å | θ = 3.4–27.5º |
| b = 12.966 (5) Å | µ = 1.69 mm−1 |
| c = 8.810 (3) Å | T = 123 (2) K |
| β = 91.12 (5)º | Prism, orange |
| V = 929.3 (6) Å3 | 0.30 × 0.25 × 0.22 mm |
| Z = 2 |
Data collection
| Rigaku/MSC Mercury CCD diffractometer | 2117 independent reflections |
| Radiation source: fine-focus sealed tube | 2040 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.025 |
| T = 123(2) K | θmax = 27.5º |
| ω scans | θmin = 3.9º |
| Absorption correction: integration(NUMABS; Higashi, 1999) | h = −8→10 |
| Tmin = 0.632, Tmax = 0.708 | k = −16→13 |
| 7301 measured reflections | l = −11→11 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
| wR(F2) = 0.043 | w = 1/[σ2(Fo2) + 0.6382P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.35 | (Δ/σ)max = 0.001 |
| 2117 reflections | Δρmax = 0.66 e Å−3 |
| 106 parameters | Δρmin = −0.48 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Pd1 | 0.0000 | 0.5000 | 0.5000 | 0.00900 (6) | |
| S1 | −0.19061 (6) | 0.37251 (3) | 0.56476 (5) | 0.01265 (10) | |
| C1 | −0.1354 (2) | 0.26304 (14) | 0.4664 (2) | 0.0140 (4) | |
| N1 | −0.0189 (2) | 0.26297 (13) | 0.36425 (19) | 0.0197 (4) | |
| H1A | 0.0068 | 0.2054 | 0.3175 | 0.024* | |
| H1B | 0.0332 | 0.3205 | 0.3429 | 0.024* | |
| N2 | −0.2134 (2) | 0.17612 (13) | 0.49809 (19) | 0.0199 (4) | |
| H2A | −0.1874 | 0.1187 | 0.4511 | 0.024* | |
| H2B | −0.2911 | 0.1759 | 0.5661 | 0.024* | |
| S2 | 0.13159 (6) | 0.47003 (4) | 0.73312 (5) | 0.01300 (10) | |
| C2 | 0.3204 (2) | 0.41505 (14) | 0.7012 (2) | 0.0141 (4) | |
| N3 | 0.3774 (2) | 0.39827 (14) | 0.56415 (18) | 0.0201 (4) | |
| H3A | 0.4743 | 0.3693 | 0.5534 | 0.024* | |
| H3B | 0.3184 | 0.4160 | 0.4835 | 0.024* | |
| N4 | 0.4105 (2) | 0.38793 (14) | 0.82155 (19) | 0.0219 (4) | |
| H4A | 0.5073 | 0.3591 | 0.8096 | 0.026* | |
| H4B | 0.3736 | 0.3988 | 0.9134 | 0.026* | |
| S3 | 0.22933 (7) | 0.42269 (4) | 0.17265 (6) | 0.02044 (12) | |
| C3 | 0.4076 (3) | 0.36611 (15) | 0.2055 (2) | 0.0186 (4) | |
| N5 | 0.5334 (2) | 0.32525 (15) | 0.2287 (2) | 0.0260 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Pd1 | 0.00878 (10) | 0.00771 (9) | 0.01049 (9) | 0.00000 (7) | −0.00061 (7) | 0.00047 (7) |
| S1 | 0.0121 (2) | 0.0103 (2) | 0.0156 (2) | −0.00127 (17) | 0.00147 (17) | −0.00054 (16) |
| C1 | 0.0152 (10) | 0.0128 (9) | 0.0137 (9) | −0.0004 (7) | −0.0027 (7) | 0.0001 (7) |
| N1 | 0.0228 (10) | 0.0129 (8) | 0.0238 (9) | −0.0030 (7) | 0.0077 (7) | −0.0057 (6) |
| N2 | 0.0248 (10) | 0.0115 (8) | 0.0236 (9) | −0.0039 (7) | 0.0073 (7) | −0.0027 (7) |
| S2 | 0.0111 (2) | 0.0163 (2) | 0.0115 (2) | 0.00134 (17) | −0.00052 (16) | 0.00123 (16) |
| C2 | 0.0126 (9) | 0.0124 (9) | 0.0172 (9) | −0.0010 (7) | −0.0007 (7) | 0.0011 (7) |
| N3 | 0.0166 (9) | 0.0275 (9) | 0.0162 (8) | 0.0096 (7) | 0.0005 (7) | 0.0019 (7) |
| N4 | 0.0170 (9) | 0.0309 (10) | 0.0176 (8) | 0.0108 (8) | −0.0040 (7) | 0.0005 (7) |
| S3 | 0.0193 (3) | 0.0202 (2) | 0.0220 (2) | 0.0026 (2) | 0.0054 (2) | 0.00404 (19) |
| C3 | 0.0235 (12) | 0.0183 (10) | 0.0144 (9) | −0.0049 (8) | 0.0061 (8) | −0.0029 (7) |
| N5 | 0.0232 (11) | 0.0256 (9) | 0.0292 (10) | 0.0018 (8) | 0.0031 (8) | −0.0007 (8) |
Geometric parameters (Å, °)
| Pd1—S2 | 2.3302 (11) | N2—H2B | 0.8800 |
| Pd1—S2i | 2.3302 (11) | S2—C2 | 1.721 (2) |
| Pd1—S1 | 2.3448 (8) | C2—N3 | 1.320 (3) |
| Pd1—S1i | 2.3448 (8) | C2—N4 | 1.325 (3) |
| S1—C1 | 1.727 (2) | N3—H3A | 0.8800 |
| C1—N1 | 1.320 (3) | N3—H3B | 0.8800 |
| C1—N2 | 1.326 (3) | N4—H4A | 0.8800 |
| N1—H1A | 0.8800 | N4—H4B | 0.8800 |
| N1—H1B | 0.8800 | S3—C3 | 1.646 (2) |
| N2—H2A | 0.8800 | C3—N5 | 1.167 (3) |
| S2—Pd1—S2i | 180.0 | C1—N2—H2B | 120.0 |
| S2—Pd1—S1 | 87.86 (3) | H2A—N2—H2B | 120.0 |
| S2i—Pd1—S1 | 92.14 (3) | C2—S2—Pd1 | 108.72 (7) |
| S2—Pd1—S1i | 92.14 (3) | N3—C2—N4 | 119.29 (18) |
| S2i—Pd1—S1i | 87.86 (3) | N3—C2—S2 | 123.27 (15) |
| S1—Pd1—S1i | 180.0 | N4—C2—S2 | 117.44 (15) |
| C1—S1—Pd1 | 106.11 (7) | C2—N3—H3A | 120.0 |
| N1—C1—N2 | 119.74 (17) | C2—N3—H3B | 120.0 |
| N1—C1—S1 | 122.68 (15) | H3A—N3—H3B | 120.0 |
| N2—C1—S1 | 117.57 (15) | C2—N4—H4A | 120.0 |
| C1—N1—H1A | 120.0 | C2—N4—H4B | 120.0 |
| C1—N1—H1B | 120.0 | H4A—N4—H4B | 120.0 |
| H1A—N1—H1B | 120.0 | N5—C3—S3 | 179.5 (2) |
| C1—N2—H2A | 120.0 | ||
| S2—Pd1—S1—C1 | −101.78 (7) | S1—Pd1—S2—C2 | 112.12 (7) |
| S2i—Pd1—S1—C1 | 78.22 (7) | S1i—Pd1—S2—C2 | −67.88 (7) |
| Pd1—S1—C1—N1 | −6.95 (19) | Pd1—S2—C2—N3 | 2.44 (18) |
| Pd1—S1—C1—N2 | 172.15 (14) | Pd1—S2—C2—N4 | −176.95 (14) |
Symmetry codes: (i) −x, −y+1, −z+1.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1B···S3 | 0.88 | 2.58 | 3.369 (2) | 150 |
| N1—H1A···S2ii | 0.88 | 2.60 | 3.466 (2) | 166 |
| N2—H2A···S3iii | 0.88 | 2.78 | 3.615 (2) | 158 |
| N2—H2B···N5iv | 0.88 | 2.04 | 2.922 (3) | 178 |
| N3—H3B···S3 | 0.88 | 2.82 | 3.645 (2) | 157 |
| N3—H3A···S1v | 0.88 | 2.73 | 3.531 (2) | 153 |
| N4—H4B···S3vi | 0.88 | 2.61 | 3.482 (2) | 173 |
| N4—H4A···N5vii | 0.88 | 2.50 | 3.056 (3) | 121 |
Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x, y−1/2, −z+1/2; (iv) x−1, −y+1/2, z+1/2; (v) x+1, y, z; (vi) x, y, z+1; (vii) x, −y+1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2176).
References
- Akrivos, P. D. (2001). Coord. Chem. Rev.213, 181–210.
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
- Bott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A. & Jones, B. E. (1998). Inorg. Chem.37, 651–657.
- Cusumano, M., Di Pietro, M. L., Giannetto, A. & Vainiglia, P. A. (2005). J. Inorg. Biochem.99, 560–565. [DOI] [PubMed]
- Dupa, M. R. & Krebs, B. (1973). Inorg. Chim. Acta, 7, 271–276.
- Gale, P. A., Light, M. E. & Quesada, R. (2006). CrystEngComm, 8, 178–188.
- Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
- Hunt, G. W., Terry, N. W. & Amma, E. L. (1979). Acta Cryst. B35, 1235–1236.
- Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation & Rigaku (2001). CrystalClear MSC, The Woodlands, Texas, USA.
- Molecular Structure Corporation & Rigaku (2004). TEXSAN MSC, The Woodlands, Texas, USA.
- Raper, E. S. (1996). Coord. Chem. Rev.153, 199–255.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Taylor, F. Jr, Weiniger, M. S. & Amma, E. L. (1974). Inorg. Chem.13, 2835–2842.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801088X/wm2176sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680801088X/wm2176Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

