Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):o929. doi: 10.1107/S1600536808005965

Ethyl 6-methyl-4-[2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)thio­phen-3-yl]-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

Andreas Decken a,*, Matthew T Zamora b, Dominique R Duguay b, Christopher M Vogels b, Stephen A Westcott b
PMCID: PMC2961284  PMID: 21202410

Abstract

A new Biginelli compound, C18H25BN2O4S2, containing a boronate ester group was synthesized from a lithium bromide-catalysed reaction. The compound crystallizes with two independent mol­ecules in the asymmetric unit that differ mainly in the conformation of the ester functionality. The crystal structure is stabilized by inter­molecular N—H⋯O and N—H⋯S hydrogen bonds involving the 3,4-dihydro­pyrimidine-2(1H)-thione NH groups as donors and the carbonyl O and thio­phene S atoms as acceptors.

Related literature

Blacquiere et al. (2005) report on previously studied boronic acid Ugi compounds. Miyaura & Suzuki (1995) give an excellent review on the Suzuki–Miyaura cross-coupling reaction of aryl halides with organoboron derivatives. Vogels et al. (2006) describe the synthesis and characterization of aryl boronate esters derived from aniline. Yang et al. (2003) highlight recent advances of boron chemistry in medicinal research.graphic file with name e-64-0o929-scheme1.jpg

Experimental

Crystal data

  • C18H25BN2O4S2

  • M r = 408.33

  • Triclinic, Inline graphic

  • a = 11.9274 (17) Å

  • b = 13.5021 (19) Å

  • c = 15.225 (2) Å

  • α = 112.172 (2)°

  • β = 93.531 (2)°

  • γ = 109.706 (2)°

  • V = 2086.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 (1) K

  • 0.6 × 0.6 × 0.4 mm

Data collection

  • Bruker SMART1000/P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.850, T max = 0.896

  • 14611 measured reflections

  • 9077 independent reflections

  • 7758 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.03

  • 9077 reflections

  • 499 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005965/gk2133sup1.cif

e-64-0o929-sup1.cif (29.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005965/gk2133Isup2.hkl

e-64-0o929-Isup2.hkl (443.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯S3 0.88 2.91 3.7702 (15) 167
N6—H6⋯O49i 0.88 2.06 2.8666 (17) 152
N36—H36⋯O19ii 0.88 2.14 2.9670 (17) 155
N38—H38⋯S2iii 0.88 2.61 3.4817 (14) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was funded by the Natural Science and Engineering Research Council and AIF/ACOA (Canada).

supplementary crystallographic information

Comment

Compounds containing boronic acids [RB(OH)2] or boronate esters [RB(OR')2] have found remarkable synthetic utility in Suzuki-Miyaura cross coupling reactions (Miyaura and Suzuki, 1995) over the past decade. Interest in these compounds also arises from their diverse and potent biological activities (Yang et al., 2003). Indeed, we have recently shown that dihydropyrimidinones (Biginelli products) containing boronic acids show significant promise for their ability to inhibit the MCF7 breast cancer cell line (Blacquiere et al., 2005). Biginelli compounds containing thiophenes showed the most promise in this study. Some of the biological properties of boron compounds have been attributed to the ability of the three-coordinate boron atom to form bonds with biomolecules, as well as form hydrogen bonds with the adjacent O atoms of the boronic acid or boronate ester group. We are preparing a family of boron-containing Biginelli products in order to understand the mechanism of action of these compounds in an effort to design more potent candidates.

The title compound crystallizes with two independent molecules per asymmetric unit. In one of the independent molecules the ester group is coplanar with the pyrimidine ring [torsion angles: C40—C48—O50—C51 = 177.11 (13)° and C48—O50—C51—C52 = 179.83 (16)°], the second independent molecule shows rotation of the ethyl group of the ester moiety that displaces the methyl group from the pyrimidine ring plane [torsion angles: C10—C18—O20—C21 = -179.33 (13)° and C18—O20—C21—C22 = -81.2 (2)°]. Conversely, the latter molecule displays coplanar dioxaborolane and thiophene rings [torsion angles: C2—C1—B1—O2 = 6.2 (3)° and S1—C1—B1—O1 = 3.4 (2)°], while the former shows rotation about the inter-ring linkage [torsion angles: C32—C31—B31—O32 = 20.9 (2)° and S3—C31—B31—O31 = 24.7 (3)°]. However, these torsion angles allow for orbital overlap between the boron pz orbital and the aryl π-electron system. The Bpin skeleton displays similar bond lengths and angles as found in related aniline derivatives (Vogels et al., 2006). Although steric crowding at the boron center is not present, the title compound shows no appreciable intra- or intermolecular Lewis acid-base interactions. However, hydrogen bonding is observed for all N—H groups of the 3,4-dihydropyrimidine-2(1H)-thione fragment. Two NH···O bonds are present for H6 and H36 (H6···O49i = 2.06 Å, (i): x, y - 1, z and H36···O19ii = 2.14 Å. (ii): x - 1, y, z) while two very long NH···S bonds are found for H8 and H38 (H8···S3 = 2.91 Å and H38···S2iii = 2.61 Å, (iii): -x, -y + 1, -z).

Experimental

2-(4,4,5,5-Tetramethyl-1,3,2,-dioxaborolan-3-yl)thiophenecarboxaldehyde (548 mg, 2.30 mmol), ethyl acetoacetate (456 mg, 3.50 mmol) and thiourea (266 mg, 3.49 mmol) were added together with CH3CN (15 ml) and a catalytic amount of lithium bromide (40 mg, 0.46 mmol). The reaction was heated at reflux for 60 h. The solvent was reduced to 5 ml and allowed to stand at room temperature. The title compound precipitated as colourless crystals. Yield: 740 mg (79%); m.p. 469 – 471 K.

Refinement

Hydrogen atoms were included in calculated positions at distances of 0.88 (NH), 0.95 (CH-sp2), 0.98 (CH3), 0.99 (CH2), and 1.0 Å (CH-sp3) from the parent atom and refined using a riding model. Ueq were 1.5 times of the parent atom for CH3 hydrogen atoms and 1.2 times for all remaining hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.

Crystal data

C18H25BN2O4S2 Z = 4
Mr = 408.33 F000 = 864
Triclinic, P1 Dx = 1.300 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 11.9274 (17) Å Cell parameters from 5490 reflections
b = 13.5021 (19) Å θ = 2.7–28.5º
c = 15.225 (2) Å µ = 0.28 mm1
α = 112.172 (2)º T = 173 (1) K
β = 93.531 (2)º Irregular, colourless
γ = 109.706 (2)º 0.6 × 0.6 × 0.4 mm
V = 2086.9 (5) Å3

Data collection

Bruker SMART1000/P4 diffractometer 7758 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.017
T = 173(1) K θmax = 27.5º
φ and ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997) h = −15→15
Tmin = 0.850, Tmax = 0.896 k = −16→17
14611 measured reflections l = −19→19
9077 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.113   w = 1/[σ2(Fo2) + (0.061P)2 + 0.8428P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
9077 reflections Δρmax = 0.51 e Å3
499 parameters Δρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
B1 0.58518 (16) 0.09209 (15) 0.27239 (12) 0.0268 (3)
O1 0.61743 (12) 0.02062 (10) 0.30254 (8) 0.0377 (3)
O2 0.55784 (13) 0.05290 (10) 0.17436 (8) 0.0392 (3)
C1 0.57648 (13) 0.20455 (12) 0.34609 (10) 0.0241 (3)
C2 0.53195 (13) 0.27993 (12) 0.33090 (10) 0.0230 (3)
C3 0.52890 (16) 0.36718 (14) 0.41845 (11) 0.0324 (3)
H3 0.5002 0.4255 0.4207 0.039*
C4 0.57164 (17) 0.35812 (14) 0.49885 (11) 0.0346 (4)
H4 0.5762 0.4091 0.5635 0.042*
C5 0.48905 (13) 0.27052 (12) 0.23100 (10) 0.0232 (3)
H5 0.5127 0.2116 0.1819 0.028*
N6 0.35516 (12) 0.23074 (11) 0.20829 (9) 0.0274 (3)
H6 0.3125 0.1567 0.1918 0.033*
C7 0.29331 (14) 0.29623 (13) 0.21037 (10) 0.0271 (3)
N8 0.36068 (13) 0.40921 (12) 0.22901 (10) 0.0324 (3)
H8 0.3244 0.4585 0.2442 0.039*
C9 0.48338 (15) 0.45081 (13) 0.22532 (11) 0.0296 (3)
C10 0.54748 (14) 0.38534 (13) 0.22401 (10) 0.0262 (3)
C11 0.59061 (18) −0.08779 (14) 0.21602 (12) 0.0366 (4)
C12 0.5912 (2) −0.04760 (16) 0.13318 (13) 0.0435 (5)
C13 0.4647 (2) −0.17160 (18) 0.21154 (18) 0.0577 (6)
H13A 0.4638 −0.1794 0.2729 0.086*
H13B 0.4460 −0.2477 0.1580 0.086*
H13C 0.4035 −0.1415 0.2008 0.086*
C14 0.6837 (2) −0.13695 (18) 0.22800 (16) 0.0526 (5)
H14A 0.7657 −0.0798 0.2377 0.079*
H14B 0.6682 −0.2079 0.1696 0.079*
H14C 0.6778 −0.1551 0.2845 0.079*
C15 0.5030 (3) −0.1337 (2) 0.03940 (16) 0.0806 (10)
H15A 0.4195 −0.1507 0.0496 0.121*
H15B 0.5180 −0.2053 0.0159 0.121*
H15C 0.5136 −0.1013 −0.0088 0.121*
C16 0.7206 (3) −0.0007 (2) 0.1157 (2) 0.0859 (10)
H16A 0.7208 0.0386 0.0732 0.129*
H16B 0.7460 −0.0654 0.0850 0.129*
H16C 0.7775 0.0545 0.1780 0.129*
C17 0.52927 (18) 0.56795 (15) 0.22327 (14) 0.0409 (4)
H17A 0.5924 0.6242 0.2819 0.061*
H17B 0.4616 0.5932 0.2209 0.061*
H17C 0.5637 0.5629 0.1657 0.061*
C18 0.67612 (15) 0.42200 (14) 0.21689 (11) 0.0305 (3)
O19 0.74306 (12) 0.51853 (11) 0.22815 (9) 0.0418 (3)
O20 0.71312 (11) 0.33367 (11) 0.19778 (9) 0.0371 (3)
C21 0.83969 (17) 0.35731 (19) 0.18969 (14) 0.0436 (4)
H21A 0.8652 0.3001 0.2015 0.052*
H21B 0.8925 0.4356 0.2398 0.052*
C22 0.8558 (2) 0.3510 (2) 0.09137 (15) 0.0562 (5)
H22A 0.8012 0.2745 0.0415 0.084*
H22B 0.9405 0.3628 0.0867 0.084*
H22C 0.8362 0.4114 0.0814 0.084*
S1 0.61592 (4) 0.24412 (3) 0.46920 (3) 0.02971 (10)
S2 0.14012 (4) 0.24790 (4) 0.19037 (3) 0.03629 (11)
B31 0.02234 (17) 0.68959 (16) 0.39397 (12) 0.0284 (3)
O31 0.00329 (13) 0.61897 (11) 0.43996 (9) 0.0414 (3)
O32 −0.01311 (12) 0.77979 (11) 0.43404 (9) 0.0381 (3)
C31 0.07500 (14) 0.66371 (13) 0.30092 (11) 0.0258 (3)
C32 0.06028 (13) 0.69246 (12) 0.22483 (10) 0.0238 (3)
C33 0.11366 (16) 0.64187 (15) 0.14773 (12) 0.0328 (3)
H33 0.1109 0.6525 0.0895 0.039*
C34 0.16881 (17) 0.57679 (17) 0.16648 (13) 0.0391 (4)
H34 0.2099 0.5374 0.1236 0.047*
C35 −0.00662 (13) 0.76922 (13) 0.22187 (10) 0.0241 (3)
H35 −0.0143 0.8128 0.2893 0.029*
N36 −0.13008 (12) 0.69678 (11) 0.15964 (9) 0.0280 (3)
H36 −0.1828 0.6552 0.1828 0.034*
C37 −0.17010 (14) 0.68757 (13) 0.07252 (11) 0.0274 (3)
N38 −0.09181 (13) 0.76047 (12) 0.04064 (9) 0.0315 (3)
H38 −0.1143 0.7523 −0.0187 0.038*
C39 0.02087 (15) 0.84658 (14) 0.09561 (11) 0.0287 (3)
C40 0.06281 (14) 0.85601 (13) 0.18401 (11) 0.0263 (3)
C41 −0.03602 (17) 0.67207 (16) 0.52899 (12) 0.0356 (4)
C42 −0.07393 (17) 0.76491 (15) 0.51102 (12) 0.0355 (4)
C43 −0.1385 (2) 0.5765 (2) 0.53879 (17) 0.0565 (5)
H43A −0.2023 0.5341 0.4791 0.085*
H43B −0.1728 0.6105 0.5939 0.085*
H43C −0.1068 0.5229 0.5497 0.085*
C44 0.0726 (2) 0.7245 (2) 0.61186 (15) 0.0584 (6)
H44A 0.1004 0.6640 0.6119 0.088*
H44B 0.0492 0.7581 0.6735 0.088*
H44C 0.1386 0.7854 0.6040 0.088*
C45 −0.2104 (2) 0.7200 (2) 0.46867 (17) 0.0579 (6)
H45A −0.2260 0.7746 0.4468 0.087*
H45B −0.2564 0.7127 0.5186 0.087*
H45C −0.2362 0.6439 0.4134 0.087*
C46 −0.0335 (2) 0.88144 (19) 0.59638 (15) 0.0570 (6)
H46A 0.0552 0.9131 0.6192 0.086*
H46B −0.0734 0.8726 0.6489 0.086*
H46C −0.0561 0.9346 0.5766 0.086*
C47 0.08465 (18) 0.92231 (16) 0.04776 (13) 0.0403 (4)
H47A 0.0885 1.0012 0.0839 0.060*
H47B 0.0395 0.8907 −0.0192 0.060*
H47C 0.1676 0.9244 0.0474 0.060*
C48 0.18103 (15) 0.94540 (13) 0.24476 (11) 0.0280 (3)
O49 0.25664 (11) 1.01361 (11) 0.22269 (9) 0.0409 (3)
O50 0.19949 (10) 0.94226 (10) 0.33108 (8) 0.0307 (2)
C51 0.31590 (15) 1.02263 (15) 0.39685 (12) 0.0339 (3)
H51A 0.3266 1.1037 0.4118 0.041*
H51B 0.3836 1.0078 0.3673 0.041*
C52 0.3146 (2) 1.0030 (2) 0.48767 (15) 0.0570 (6)
H52A 0.2462 1.0165 0.5153 0.085*
H52B 0.3914 1.0568 0.5350 0.085*
H52C 0.3054 0.9229 0.4719 0.085*
S3 0.15505 (4) 0.57455 (4) 0.27683 (3) 0.03606 (11)
S4 −0.31028 (4) 0.59544 (4) 0.00464 (3) 0.03619 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
B1 0.0314 (9) 0.0225 (8) 0.0266 (8) 0.0111 (7) 0.0046 (7) 0.0102 (7)
O1 0.0608 (8) 0.0294 (6) 0.0272 (6) 0.0273 (6) 0.0044 (5) 0.0087 (5)
O2 0.0701 (9) 0.0296 (6) 0.0245 (5) 0.0290 (6) 0.0087 (5) 0.0101 (5)
C1 0.0282 (7) 0.0220 (7) 0.0214 (6) 0.0092 (6) 0.0049 (5) 0.0093 (5)
C2 0.0270 (7) 0.0199 (6) 0.0228 (6) 0.0093 (6) 0.0060 (5) 0.0096 (5)
C3 0.0467 (10) 0.0283 (8) 0.0271 (7) 0.0214 (7) 0.0099 (7) 0.0103 (6)
C4 0.0493 (10) 0.0309 (8) 0.0242 (7) 0.0202 (8) 0.0089 (7) 0.0081 (6)
C5 0.0275 (7) 0.0197 (7) 0.0233 (6) 0.0089 (6) 0.0055 (5) 0.0101 (5)
N6 0.0289 (7) 0.0222 (6) 0.0308 (6) 0.0072 (5) 0.0038 (5) 0.0140 (5)
C7 0.0319 (8) 0.0298 (8) 0.0201 (6) 0.0125 (6) 0.0045 (6) 0.0106 (6)
N8 0.0352 (7) 0.0268 (7) 0.0376 (7) 0.0163 (6) 0.0044 (6) 0.0129 (6)
C9 0.0371 (8) 0.0226 (7) 0.0262 (7) 0.0084 (6) 0.0005 (6) 0.0112 (6)
C10 0.0330 (8) 0.0219 (7) 0.0232 (7) 0.0081 (6) 0.0055 (6) 0.0115 (6)
C11 0.0522 (11) 0.0266 (8) 0.0310 (8) 0.0208 (8) 0.0056 (7) 0.0078 (7)
C12 0.0767 (14) 0.0308 (9) 0.0301 (8) 0.0310 (9) 0.0170 (9) 0.0105 (7)
C13 0.0665 (14) 0.0335 (10) 0.0689 (14) 0.0158 (10) 0.0229 (12) 0.0195 (10)
C14 0.0705 (14) 0.0420 (11) 0.0486 (11) 0.0375 (11) 0.0057 (10) 0.0101 (9)
C15 0.151 (3) 0.0480 (13) 0.0311 (10) 0.0518 (16) −0.0135 (13) −0.0019 (9)
C16 0.119 (3) 0.0636 (16) 0.101 (2) 0.0466 (17) 0.083 (2) 0.0432 (16)
C17 0.0500 (11) 0.0251 (8) 0.0476 (10) 0.0113 (8) −0.0009 (8) 0.0201 (8)
C18 0.0352 (8) 0.0289 (8) 0.0247 (7) 0.0077 (7) 0.0063 (6) 0.0130 (6)
O19 0.0404 (7) 0.0334 (6) 0.0465 (7) 0.0030 (5) 0.0085 (6) 0.0219 (6)
O20 0.0338 (6) 0.0349 (6) 0.0438 (7) 0.0133 (5) 0.0150 (5) 0.0170 (5)
C21 0.0352 (9) 0.0517 (11) 0.0443 (10) 0.0170 (8) 0.0140 (8) 0.0198 (9)
C22 0.0513 (12) 0.0645 (14) 0.0458 (11) 0.0183 (11) 0.0217 (9) 0.0184 (10)
S1 0.0382 (2) 0.0288 (2) 0.02272 (18) 0.01457 (17) 0.00229 (15) 0.01086 (15)
S2 0.0301 (2) 0.0475 (3) 0.0326 (2) 0.01577 (18) 0.00692 (16) 0.01790 (19)
B31 0.0318 (9) 0.0316 (9) 0.0264 (8) 0.0150 (7) 0.0083 (7) 0.0144 (7)
O31 0.0678 (9) 0.0464 (7) 0.0334 (6) 0.0363 (7) 0.0252 (6) 0.0262 (6)
O32 0.0580 (8) 0.0422 (7) 0.0335 (6) 0.0314 (6) 0.0248 (6) 0.0231 (5)
C31 0.0286 (7) 0.0256 (7) 0.0268 (7) 0.0135 (6) 0.0075 (6) 0.0120 (6)
C32 0.0241 (7) 0.0231 (7) 0.0255 (7) 0.0089 (6) 0.0084 (5) 0.0113 (6)
C33 0.0382 (9) 0.0375 (9) 0.0287 (7) 0.0191 (7) 0.0146 (7) 0.0153 (7)
C34 0.0428 (10) 0.0458 (10) 0.0356 (9) 0.0274 (8) 0.0172 (7) 0.0141 (8)
C35 0.0249 (7) 0.0250 (7) 0.0252 (7) 0.0097 (6) 0.0075 (5) 0.0132 (6)
N36 0.0244 (6) 0.0313 (7) 0.0314 (6) 0.0087 (5) 0.0084 (5) 0.0178 (6)
C37 0.0276 (7) 0.0283 (7) 0.0275 (7) 0.0140 (6) 0.0091 (6) 0.0099 (6)
N38 0.0335 (7) 0.0358 (7) 0.0234 (6) 0.0089 (6) 0.0046 (5) 0.0149 (6)
C39 0.0328 (8) 0.0278 (8) 0.0283 (7) 0.0112 (6) 0.0084 (6) 0.0149 (6)
C40 0.0291 (8) 0.0245 (7) 0.0282 (7) 0.0098 (6) 0.0080 (6) 0.0145 (6)
C41 0.0440 (10) 0.0445 (10) 0.0257 (7) 0.0211 (8) 0.0138 (7) 0.0182 (7)
C42 0.0457 (10) 0.0397 (9) 0.0286 (8) 0.0225 (8) 0.0172 (7) 0.0157 (7)
C43 0.0691 (15) 0.0523 (12) 0.0567 (12) 0.0208 (11) 0.0256 (11) 0.0325 (11)
C44 0.0548 (13) 0.0888 (17) 0.0381 (10) 0.0383 (13) 0.0068 (9) 0.0250 (11)
C45 0.0492 (12) 0.0742 (16) 0.0594 (13) 0.0369 (12) 0.0166 (10) 0.0256 (12)
C46 0.0811 (16) 0.0480 (12) 0.0403 (10) 0.0300 (12) 0.0205 (10) 0.0116 (9)
C47 0.0455 (10) 0.0405 (10) 0.0341 (8) 0.0059 (8) 0.0041 (7) 0.0252 (8)
C48 0.0320 (8) 0.0249 (7) 0.0308 (7) 0.0112 (6) 0.0062 (6) 0.0156 (6)
O49 0.0372 (7) 0.0382 (7) 0.0454 (7) 0.0009 (5) 0.0016 (5) 0.0290 (6)
O50 0.0304 (6) 0.0308 (6) 0.0272 (5) 0.0060 (5) 0.0029 (4) 0.0143 (5)
C51 0.0315 (8) 0.0316 (8) 0.0325 (8) 0.0084 (7) 0.0003 (6) 0.0117 (7)
C52 0.0549 (13) 0.0628 (14) 0.0447 (11) 0.0078 (11) −0.0086 (9) 0.0302 (10)
S3 0.0420 (2) 0.0420 (2) 0.0362 (2) 0.0287 (2) 0.01057 (18) 0.01775 (18)
S4 0.0273 (2) 0.0421 (2) 0.0285 (2) 0.00897 (17) 0.00539 (15) 0.00812 (17)

Geometric parameters (Å, °)

B1—O2 1.357 (2) B31—O31 1.352 (2)
B1—O1 1.361 (2) B31—O32 1.361 (2)
B1—C1 1.553 (2) B31—C31 1.552 (2)
O1—C11 1.4688 (19) O31—C41 1.4639 (19)
O2—C12 1.465 (2) O32—C42 1.4575 (19)
C1—C2 1.378 (2) C31—C32 1.373 (2)
C1—S1 1.7280 (14) C31—S3 1.7265 (15)
C2—C3 1.420 (2) C32—C33 1.425 (2)
C2—C5 1.5185 (19) C32—C35 1.517 (2)
C3—C4 1.361 (2) C33—C34 1.357 (2)
C3—H3 0.9500 C33—H33 0.9500
C4—S1 1.7045 (17) C34—S3 1.7088 (18)
C4—H4 0.9500 C34—H34 0.9500
C5—N6 1.4737 (19) C35—N36 1.4766 (19)
C5—C10 1.5184 (19) C35—C40 1.5184 (19)
C5—H5 1.0000 C35—H35 1.0000
N6—C7 1.322 (2) N36—C37 1.327 (2)
N6—H6 0.8800 N36—H36 0.8800
C7—N8 1.368 (2) C37—N38 1.369 (2)
C7—S2 1.6836 (16) C37—S4 1.6808 (16)
N8—C9 1.393 (2) N38—C39 1.390 (2)
N8—H8 0.8800 N38—H38 0.8800
C9—C10 1.346 (2) C39—C40 1.350 (2)
C9—C17 1.503 (2) C39—C47 1.504 (2)
C10—C18 1.470 (2) C40—C48 1.466 (2)
C11—C14 1.507 (3) C41—C44 1.509 (3)
C11—C13 1.524 (3) C41—C43 1.512 (3)
C11—C12 1.549 (2) C41—C42 1.574 (2)
C12—C15 1.495 (3) C42—C46 1.505 (3)
C12—C16 1.540 (3) C42—C45 1.531 (3)
C13—H13A 0.9800 C43—H43A 0.9800
C13—H13B 0.9800 C43—H43B 0.9800
C13—H13C 0.9800 C43—H43C 0.9800
C14—H14A 0.9800 C44—H44A 0.9800
C14—H14B 0.9800 C44—H44B 0.9800
C14—H14C 0.9800 C44—H44C 0.9800
C15—H15A 0.9800 C45—H45A 0.9800
C15—H15B 0.9800 C45—H45B 0.9800
C15—H15C 0.9800 C45—H45C 0.9800
C16—H16A 0.9800 C46—H46A 0.9800
C16—H16B 0.9800 C46—H46B 0.9800
C16—H16C 0.9800 C46—H46C 0.9800
C17—H17A 0.9800 C47—H47A 0.9800
C17—H17B 0.9800 C47—H47B 0.9800
C17—H17C 0.9800 C47—H47C 0.9800
C18—O19 1.216 (2) C48—O49 1.2187 (19)
C18—O20 1.346 (2) C48—O50 1.3379 (18)
O20—C21 1.457 (2) O50—C51 1.4494 (19)
C21—C22 1.495 (3) C51—C52 1.503 (3)
C21—H21A 0.9900 C51—H51A 0.9900
C21—H21B 0.9900 C51—H51B 0.9900
C22—H22A 0.9800 C52—H52A 0.9800
C22—H22B 0.9800 C52—H52B 0.9800
C22—H22C 0.9800 C52—H52C 0.9800
O2—B1—O1 113.78 (14) O31—B31—O32 114.26 (14)
O2—B1—C1 124.84 (14) O31—B31—C31 121.32 (15)
O1—B1—C1 121.33 (14) O32—B31—C31 124.37 (14)
B1—O1—C11 107.00 (12) B31—O31—C41 108.06 (13)
B1—O2—C12 106.97 (12) B31—O32—C42 107.96 (12)
C2—C1—B1 130.36 (13) C32—C31—B31 130.28 (14)
C2—C1—S1 109.91 (11) C32—C31—S3 110.11 (11)
B1—C1—S1 119.54 (11) B31—C31—S3 119.35 (11)
C1—C2—C3 113.10 (13) C31—C32—C33 113.05 (14)
C1—C2—C5 123.78 (12) C31—C32—C35 123.94 (13)
C3—C2—C5 123.12 (13) C33—C32—C35 123.01 (13)
C4—C3—C2 112.63 (14) C34—C33—C32 112.64 (14)
C4—C3—H3 123.7 C34—C33—H33 123.7
C2—C3—H3 123.7 C32—C33—H33 123.7
C3—C4—S1 111.65 (12) C33—C34—S3 111.55 (12)
C3—C4—H4 124.2 C33—C34—H34 124.2
S1—C4—H4 124.2 S3—C34—H34 124.2
N6—C5—C10 109.92 (12) N36—C35—C32 109.80 (12)
N6—C5—C2 109.99 (11) N36—C35—C40 109.87 (12)
C10—C5—C2 111.69 (12) C32—C35—C40 110.98 (12)
N6—C5—H5 108.4 N36—C35—H35 108.7
C10—C5—H5 108.4 C32—C35—H35 108.7
C2—C5—H5 108.4 C40—C35—H35 108.7
C7—N6—C5 125.95 (13) C37—N36—C35 127.04 (13)
C7—N6—H6 117.0 C37—N36—H36 116.5
C5—N6—H6 117.0 C35—N36—H36 116.5
N6—C7—N8 116.36 (14) N36—C37—N38 116.33 (14)
N6—C7—S2 123.93 (12) N36—C37—S4 123.02 (12)
N8—C7—S2 119.70 (12) N38—C37—S4 120.63 (12)
C7—N8—C9 123.85 (14) C37—N38—C39 124.42 (13)
C7—N8—H8 118.1 C37—N38—H38 117.8
C9—N8—H8 118.1 C39—N38—H38 117.8
C10—C9—N8 118.87 (14) C40—C39—N38 119.54 (14)
C10—C9—C17 127.11 (16) C40—C39—C47 126.23 (15)
N8—C9—C17 114.02 (15) N38—C39—C47 114.23 (14)
C9—C10—C18 121.80 (14) C39—C40—C48 121.59 (14)
C9—C10—C5 120.77 (14) C39—C40—C35 121.27 (14)
C18—C10—C5 117.42 (13) C48—C40—C35 117.01 (13)
O1—C11—C14 108.90 (14) O31—C41—C44 106.68 (15)
O1—C11—C13 106.61 (15) O31—C41—C43 107.56 (16)
C14—C11—C13 109.29 (17) C44—C41—C43 110.40 (17)
O1—C11—C12 102.07 (13) O31—C41—C42 102.79 (12)
C14—C11—C12 116.75 (17) C44—C41—C42 113.58 (17)
C13—C11—C12 112.48 (17) C43—C41—C42 115.03 (16)
O2—C12—C15 109.08 (17) O32—C42—C46 108.64 (16)
O2—C12—C16 106.04 (17) O32—C42—C45 105.51 (15)
C15—C12—C16 110.6 (2) C46—C42—C45 109.92 (17)
O2—C12—C11 102.69 (13) O32—C42—C41 103.19 (12)
C15—C12—C11 116.02 (18) C46—C42—C41 115.69 (16)
C16—C12—C11 111.7 (2) C45—C42—C41 113.09 (17)
C11—C13—H13A 109.5 C41—C43—H43A 109.5
C11—C13—H13B 109.5 C41—C43—H43B 109.5
H13A—C13—H13B 109.5 H43A—C43—H43B 109.5
C11—C13—H13C 109.5 C41—C43—H43C 109.5
H13A—C13—H13C 109.5 H43A—C43—H43C 109.5
H13B—C13—H13C 109.5 H43B—C43—H43C 109.5
C11—C14—H14A 109.5 C41—C44—H44A 109.5
C11—C14—H14B 109.5 C41—C44—H44B 109.5
H14A—C14—H14B 109.5 H44A—C44—H44B 109.5
C11—C14—H14C 109.5 C41—C44—H44C 109.5
H14A—C14—H14C 109.5 H44A—C44—H44C 109.5
H14B—C14—H14C 109.5 H44B—C44—H44C 109.5
C12—C15—H15A 109.5 C42—C45—H45A 109.5
C12—C15—H15B 109.5 C42—C45—H45B 109.5
H15A—C15—H15B 109.5 H45A—C45—H45B 109.5
C12—C15—H15C 109.5 C42—C45—H45C 109.5
H15A—C15—H15C 109.5 H45A—C45—H45C 109.5
H15B—C15—H15C 109.5 H45B—C45—H45C 109.5
C12—C16—H16A 109.5 C42—C46—H46A 109.5
C12—C16—H16B 109.5 C42—C46—H46B 109.5
H16A—C16—H16B 109.5 H46A—C46—H46B 109.5
C12—C16—H16C 109.5 C42—C46—H46C 109.5
H16A—C16—H16C 109.5 H46A—C46—H46C 109.5
H16B—C16—H16C 109.5 H46B—C46—H46C 109.5
C9—C17—H17A 109.5 C39—C47—H47A 109.5
C9—C17—H17B 109.5 C39—C47—H47B 109.5
H17A—C17—H17B 109.5 H47A—C47—H47B 109.5
C9—C17—H17C 109.5 C39—C47—H47C 109.5
H17A—C17—H17C 109.5 H47A—C47—H47C 109.5
H17B—C17—H17C 109.5 H47B—C47—H47C 109.5
O19—C18—O20 123.16 (16) O49—C48—O50 122.17 (14)
O19—C18—C10 126.16 (16) O49—C48—C40 127.06 (14)
O20—C18—C10 110.66 (13) O50—C48—C40 110.75 (13)
C18—O20—C21 117.03 (14) C48—O50—C51 116.55 (12)
O20—C21—C22 111.17 (16) O50—C51—C52 106.59 (14)
O20—C21—H21A 109.4 O50—C51—H51A 110.4
C22—C21—H21A 109.4 C52—C51—H51A 110.4
O20—C21—H21B 109.4 O50—C51—H51B 110.4
C22—C21—H21B 109.4 C52—C51—H51B 110.4
H21A—C21—H21B 108.0 H51A—C51—H51B 108.6
C21—C22—H22A 109.5 C51—C52—H52A 109.5
C21—C22—H22B 109.5 C51—C52—H52B 109.5
H22A—C22—H22B 109.5 H52A—C52—H52B 109.5
C21—C22—H22C 109.5 C51—C52—H52C 109.5
H22A—C22—H22C 109.5 H52A—C52—H52C 109.5
H22B—C22—H22C 109.5 H52B—C52—H52C 109.5
C4—S1—C1 92.71 (7) C34—S3—C31 92.65 (8)
C2—C1—B1—O2 6.2 (3) C18—O20—C21—C22 −81.2 (2)
S1—C1—B1—O1 3.4 (2) C48—O50—C51—C52 179.83 (16)
C32—C31—B31—O32 −24.7 (3) C10—C18—O20—C21 −179.33 (13)
S3—C31—B31—O31 −20.9 (2) C40—C48—O50—C51 177.11 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N8—H8···S3 0.88 2.91 3.7702 (15) 167
N6—H6···O49i 0.88 2.06 2.8666 (17) 152
N36—H36···O19ii 0.88 2.14 2.9670 (17) 155
N38—H38···S2iii 0.88 2.61 3.4817 (14) 170

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2133).

References

  1. Blacquiere, J. M., Sicora, O., Vogels, C. M., Čuperlović-Culf, M., Decken, A., Ouellette, R. J. & Westcott, S. A. (2005). Can. J. Chem.83, 2052–2059.
  2. Bruker (1999). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Miyaura, N. & Suzuki, A. (1995). Chem. Rev.95, 2457–2483.
  5. Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Vogels, C. M., Decken, A. & Westcott, S. A. (2006). Tetrahedron Lett.47, 2419–2422.
  8. Yang, W., Gao, X. & Wang, B. (2003). Med. Res. Rev.23, 346–368. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005965/gk2133sup1.cif

e-64-0o929-sup1.cif (29.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005965/gk2133Isup2.hkl

e-64-0o929-Isup2.hkl (443.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES