Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):o908. doi: 10.1107/S1600536808011562

2-[(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)(4-chloro­phen­yl)meth­yl]malononitrile

Xin-Ying Zhang a,*, Xiao-Yan Li a, Xia Wang a, Dong-Fang Li a, Xue-Sen Fan a,*
PMCID: PMC2961285  PMID: 21202390

Abstract

In the crystal structure of the title compound, C20H16ClN5, the dihedral angle between the pyrazole ring and the phenyl ring is 54.7 (1)° and that between the pyrazole ring and the chloro-substituted phenyl ring is 72.4 (1)°. The methyl H atoms are disordered over two positions with site occupancy factors of ca 0.7 and 0.3. One amino H is disordered equally over two positions. In the crystal structure, the mol­ecules are linked via inter­molecular N—H⋯N hydrogen bonding.graphic file with name e-64-0o908-scheme1.jpg

Experimental

Crystal data

  • C20H16ClN5

  • M r = 361.83

  • Orthorhombic, Inline graphic

  • a = 10.4700 (11) Å

  • b = 14.0482 (15) Å

  • c = 25.409 (3) Å

  • V = 3737.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 294 (2) K

  • 0.49 × 0.48 × 0.45 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.901, T max = 0.908

  • 32456 measured reflections

  • 4661 independent reflections

  • 3055 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.118

  • S = 1.03

  • 4661 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011562/nc2101sup1.cif

e-64-0o908-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011562/nc2101Isup2.hkl

e-64-0o908-Isup2.hkl (228.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N4i 0.86 2.41 3.159 (2) 146
N3—H2N3⋯N2ii 0.86 2.53 3.325 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20772025), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 2008HASTIT006) and the Department of Education of Henan Province (No. 2008 A150013).

supplementary crystallographic information

Comment

The structure determination was undertaken as a part of a project on the synthesis of new pyrazole derivatives. In the title compound the dihedral angle between the pyrazole ring and the non-substituted phenyl ring which is directly connected to the pyrazole ring is 54.7 (1)° and that between the pyrazole ring and the chloro-substituted phenyl ring is 72.4 (1)°. The dihedral angle between the non-substituted and the chloro-substituted phenyl ring amount to 69.7 (1)° (Fig. 1).

In the crystal structure the molecules are connected via intermolecular N—H···N hydrogen bonding between the amino group at N3 and the N atoms N2 and N4 (Fig. 2 and Table 1).

Experimental

To 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 4-chloroaldehyde (1 mmol), malononitrile (1 mmol) and 5-amino-3-methyl-1-phenylpyrazole (1 mmol) were added. The reaction mixture was stirred at room temperature for 4 h and afterwards extracted five times with 2 ml of diethylether. The ether extracts were combined and concentrated. The obtained residue was recrystallized with 95% ethanol to give the product in a yield of 95% as white solid. Single crystals of the title compound were obtained by slow evaporation of the solvent from a petroleum ether-ethyl ether (1:1 v/v) solution.

Refinement

All H atoms were placed in geometrically idealized positions (methyl H atoms are disordered in two orientations) and constrained to ride on their parent atoms, with C—H distances of 0.93 - 0.98 Å and with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms). The N-H H atoms were located in difference map, their bond lengths were set to ideal values and afterwards they were refined using a riding model with Uiso(H) = 1.2Ueq(C). One of the N-H H atoms is disordered and was refined using a split model.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, with labelling displacement ellipsoids drawn at the 30% probability level. The disordering of the H atoms is not shown for clarity.

Fig. 2.

Fig. 2.

Crystal structure of the title compound with view along the a-axis. Intermolecular N—H···N hydrogen bonding is shown as dashed lines and the disordering of the H atoms is not shown for clarity.

Crystal data

C20H16ClN5 Dx = 1.286 Mg m3
Mr = 361.83 Mo Kα radiation λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 8329 reflections
a = 10.4700 (11) Å θ = 2.5–25.8º
b = 14.0482 (15) Å µ = 0.22 mm1
c = 25.409 (3) Å T = 294 (2) K
V = 3737.3 (7) Å3 Block, colourless
Z = 8 0.49 × 0.48 × 0.45 mm
F000 = 1504

Data collection

Bruker SMART CCD area-detector diffractometer 4661 independent reflections
Radiation source: fine-focus sealed tube 3055 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 294(2) K θmax = 28.4º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Bruker, 1997) h = −14→13
Tmin = 0.901, Tmax = 0.909 k = −18→18
32456 measured reflections l = −33→33

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041   w = 1/[σ2(Fo2) + (0.0404P)2 + 1.3457P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.18 e Å3
4661 reflections Δρmin = −0.32 e Å3
237 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0012 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.34596 (7) 1.04230 (4) 0.53076 (2) 0.0837 (2)
N1 0.27144 (14) 0.71251 (10) 0.78626 (5) 0.0509 (4)
N2 0.17726 (15) 0.64522 (12) 0.77803 (6) 0.0605 (4)
N3 0.43568 (16) 0.79533 (11) 0.74011 (5) 0.0623 (4)
N4 0.4155 (2) 0.44105 (12) 0.68772 (7) 0.0751 (5)
N5 0.52582 (19) 0.58634 (13) 0.54493 (7) 0.0748 (5)
C1 0.18531 (16) 0.62494 (13) 0.72710 (6) 0.0512 (4)
C2 0.28333 (15) 0.67629 (11) 0.70228 (5) 0.0414 (3)
C3 0.33723 (15) 0.73171 (11) 0.74145 (6) 0.0429 (4)
C4 0.0940 (2) 0.55545 (17) 0.70288 (8) 0.0772 (7)
H4A 0.0613 0.5811 0.6706 0.116* 0.73
H4B 0.0245 0.5440 0.7267 0.116* 0.73
H4C 0.1376 0.4967 0.6958 0.116* 0.73
H4D 0.0876 0.5001 0.7249 0.116* 0.27
H4E 0.1244 0.5372 0.6687 0.116* 0.27
H4F 0.0114 0.5845 0.6996 0.116* 0.27
C5 0.29537 (17) 0.74496 (15) 0.83845 (6) 0.0579 (5)
C6 0.2963 (2) 0.84064 (18) 0.84956 (9) 0.0847 (7)
H6 0.2812 0.8854 0.8233 0.102*
C7 0.3206 (3) 0.8691 (3) 0.90156 (14) 0.1220 (14)
H7 0.3232 0.9335 0.9099 0.146*
C8 0.3407 (3) 0.8023 (4) 0.94005 (12) 0.1401 (18)
H8 0.3567 0.8218 0.9744 0.168*
C9 0.3375 (3) 0.7080 (3) 0.92837 (10) 0.1239 (13)
H9 0.3504 0.6632 0.9548 0.149*
C10 0.3151 (2) 0.6782 (2) 0.87746 (8) 0.0846 (7)
H10 0.3133 0.6136 0.8695 0.102*
C11 0.33508 (15) 0.76013 (11) 0.61584 (5) 0.0415 (3)
C12 0.22572 (17) 0.79784 (13) 0.59298 (6) 0.0516 (4)
H12 0.1491 0.7647 0.5956 0.062*
C13 0.2283 (2) 0.88387 (14) 0.56630 (6) 0.0588 (5)
H13 0.1545 0.9082 0.5510 0.071*
C14 0.3417 (2) 0.93244 (12) 0.56298 (6) 0.0550 (5)
C15 0.45228 (19) 0.89664 (13) 0.58425 (7) 0.0569 (5)
H15 0.5287 0.9299 0.5811 0.068*
C16 0.44836 (17) 0.81010 (12) 0.61058 (6) 0.0510 (4)
H16 0.5230 0.7853 0.6249 0.061*
C17 0.32395 (14) 0.66623 (11) 0.64546 (5) 0.0401 (3)
H17 0.2568 0.6296 0.6278 0.048*
C18 0.44800 (16) 0.60557 (11) 0.64192 (6) 0.0444 (4)
H18 0.5153 0.6391 0.6613 0.053*
C19 0.42937 (18) 0.51193 (13) 0.66700 (6) 0.0525 (4)
C20 0.49158 (17) 0.59315 (12) 0.58707 (7) 0.0511 (4)
H1N3 0.4639 0.8173 0.7695 0.061*
H2N3 0.5027 0.7693 0.7270 0.061* 0.50
H3N3 0.4647 0.8134 0.7101 0.061* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1235 (5) 0.0600 (3) 0.0677 (3) 0.0238 (3) 0.0273 (3) 0.0234 (2)
N1 0.0586 (9) 0.0588 (8) 0.0354 (7) −0.0138 (7) 0.0064 (6) −0.0075 (6)
N2 0.0636 (9) 0.0760 (11) 0.0418 (8) −0.0252 (8) 0.0098 (7) −0.0067 (7)
N3 0.0761 (11) 0.0659 (9) 0.0448 (8) −0.0308 (8) 0.0096 (7) −0.0120 (7)
N4 0.1013 (14) 0.0569 (10) 0.0669 (11) 0.0076 (9) −0.0131 (10) 0.0121 (8)
N5 0.0918 (13) 0.0807 (12) 0.0518 (9) 0.0059 (10) 0.0158 (9) −0.0074 (8)
C1 0.0543 (10) 0.0587 (10) 0.0405 (8) −0.0137 (8) 0.0015 (7) −0.0033 (7)
C2 0.0474 (8) 0.0430 (8) 0.0338 (7) −0.0020 (7) 0.0003 (6) −0.0009 (6)
C3 0.0505 (9) 0.0416 (8) 0.0365 (7) −0.0045 (7) 0.0040 (6) −0.0021 (6)
C4 0.0765 (14) 0.0976 (16) 0.0575 (11) −0.0416 (12) 0.0044 (10) −0.0101 (11)
C5 0.0542 (10) 0.0810 (13) 0.0384 (8) −0.0124 (9) 0.0110 (7) −0.0155 (8)
C6 0.0862 (16) 0.0897 (16) 0.0782 (14) −0.0306 (13) 0.0300 (12) −0.0365 (12)
C7 0.102 (2) 0.157 (3) 0.107 (2) −0.063 (2) 0.0500 (18) −0.088 (2)
C8 0.091 (2) 0.268 (5) 0.0613 (17) −0.046 (3) 0.0176 (15) −0.071 (3)
C9 0.112 (2) 0.220 (4) 0.0398 (12) 0.002 (3) 0.0031 (13) −0.0061 (18)
C10 0.0911 (17) 0.120 (2) 0.0427 (10) 0.0025 (15) 0.0073 (10) −0.0001 (12)
C11 0.0507 (9) 0.0458 (8) 0.0281 (7) 0.0033 (7) 0.0007 (6) −0.0010 (6)
C12 0.0513 (10) 0.0586 (10) 0.0449 (9) 0.0051 (8) −0.0033 (7) 0.0022 (7)
C13 0.0670 (12) 0.0632 (11) 0.0461 (9) 0.0200 (10) −0.0025 (8) 0.0052 (8)
C14 0.0803 (13) 0.0494 (9) 0.0353 (8) 0.0139 (9) 0.0115 (8) 0.0056 (7)
C15 0.0649 (11) 0.0555 (10) 0.0503 (10) −0.0040 (9) 0.0091 (8) 0.0076 (8)
C16 0.0514 (10) 0.0555 (10) 0.0462 (9) 0.0005 (8) −0.0012 (7) 0.0083 (7)
C17 0.0450 (8) 0.0438 (8) 0.0315 (7) −0.0024 (7) −0.0039 (6) −0.0020 (6)
C18 0.0516 (9) 0.0471 (9) 0.0345 (7) 0.0018 (7) −0.0056 (6) −0.0022 (6)
C19 0.0623 (11) 0.0530 (10) 0.0421 (8) 0.0088 (8) −0.0079 (8) −0.0005 (7)
C20 0.0560 (10) 0.0515 (10) 0.0457 (9) 0.0062 (8) 0.0001 (8) −0.0027 (7)

Geometric parameters (Å, °)

Cl1—C14 1.7477 (17) C6—H6 0.9300
N1—C3 1.3577 (19) C7—C8 1.371 (5)
N1—N2 1.3819 (19) C7—H7 0.9300
N1—C5 1.424 (2) C8—C9 1.359 (5)
N2—C1 1.328 (2) C8—H8 0.9300
N3—C3 1.365 (2) C9—C10 1.379 (3)
N3—H1N3 0.8602 C9—H9 0.9300
N3—H2N3 0.8587 C10—H10 0.9300
N3—H3N3 0.8595 C11—C16 1.385 (2)
N4—C19 1.136 (2) C11—C12 1.389 (2)
N5—C20 1.133 (2) C11—C17 1.523 (2)
C1—C2 1.404 (2) C12—C13 1.386 (2)
C1—C4 1.499 (2) C12—H12 0.9300
C2—C3 1.384 (2) C13—C14 1.372 (3)
C2—C17 1.5117 (19) C13—H13 0.9300
C4—H4A 0.9600 C14—C15 1.373 (3)
C4—H4B 0.9600 C15—C16 1.388 (2)
C4—H4C 0.9600 C15—H15 0.9300
C4—H4D 0.9600 C16—H16 0.9300
C4—H4E 0.9600 C17—C18 1.556 (2)
C4—H4F 0.9600 C17—H17 0.9800
C5—C6 1.373 (3) C18—C19 1.475 (2)
C5—C10 1.380 (3) C18—C20 1.477 (2)
C6—C7 1.404 (4) C18—H18 0.9800
C3—N1—N2 111.78 (12) C7—C6—H6 120.9
C3—N1—C5 128.89 (14) C8—C7—C6 120.3 (3)
N2—N1—C5 119.03 (13) C8—C7—H7 119.8
C1—N2—N1 104.41 (13) C6—C7—H7 119.8
C3—N3—H1N3 118.2 C9—C8—C7 120.5 (3)
C3—N3—H2N3 110.3 C9—C8—H8 119.8
H1N3—N3—H2N3 102.1 C7—C8—H8 119.8
C3—N3—H3N3 118.9 C8—C9—C10 120.3 (3)
H1N3—N3—H3N3 122.9 C8—C9—H9 119.8
H2N3—N3—H3N3 59.4 C10—C9—H9 119.8
N2—C1—C2 111.96 (14) C9—C10—C5 119.6 (3)
N2—C1—C4 119.96 (16) C9—C10—H10 120.2
C2—C1—C4 128.07 (15) C5—C10—H10 120.2
C3—C2—C1 105.31 (13) C16—C11—C12 118.19 (15)
C3—C2—C17 128.66 (14) C16—C11—C17 123.53 (14)
C1—C2—C17 125.92 (14) C12—C11—C17 118.29 (14)
N1—C3—N3 122.28 (14) C13—C12—C11 121.41 (17)
N1—C3—C2 106.52 (13) C13—C12—H12 119.3
N3—C3—C2 131.19 (14) C11—C12—H12 119.3
C1—C4—H4A 109.5 C14—C13—C12 118.72 (17)
C1—C4—H4B 109.5 C14—C13—H13 120.6
H4A—C4—H4B 109.5 C12—C13—H13 120.6
C1—C4—H4C 109.5 C13—C14—C15 121.56 (16)
H4A—C4—H4C 109.5 C13—C14—Cl1 119.35 (15)
H4B—C4—H4C 109.5 C15—C14—Cl1 119.09 (16)
C1—C4—H4D 109.5 C14—C15—C16 119.04 (18)
H4A—C4—H4D 141.1 C14—C15—H15 120.5
H4B—C4—H4D 56.3 C16—C15—H15 120.5
H4C—C4—H4D 56.3 C11—C16—C15 121.05 (16)
C1—C4—H4E 109.5 C11—C16—H16 119.5
H4A—C4—H4E 56.3 C15—C16—H16 119.5
H4B—C4—H4E 141.1 C2—C17—C11 114.36 (12)
H4C—C4—H4E 56.3 C2—C17—C18 109.95 (12)
H4D—C4—H4E 109.5 C11—C17—C18 112.45 (12)
C1—C4—H4F 109.5 C2—C17—H17 106.5
H4A—C4—H4F 56.3 C11—C17—H17 106.5
H4B—C4—H4F 56.3 C18—C17—H17 106.5
H4C—C4—H4F 141.1 C19—C18—C20 110.08 (14)
H4D—C4—H4F 109.5 C19—C18—C17 110.68 (14)
H4E—C4—H4F 109.5 C20—C18—C17 112.15 (13)
C6—C5—C10 121.1 (2) C19—C18—H18 107.9
C6—C5—N1 120.4 (2) C20—C18—H18 107.9
C10—C5—N1 118.53 (19) C17—C18—H18 107.9
C5—C6—C7 118.2 (3) N4—C19—C18 177.99 (18)
C5—C6—H6 120.9 N5—C20—C18 178.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···N4i 0.86 2.41 3.159 (2) 146
N3—H2N3···N2ii 0.86 2.53 3.325 (2) 155

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2101).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011562/nc2101sup1.cif

e-64-0o908-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011562/nc2101Isup2.hkl

e-64-0o908-Isup2.hkl (228.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES