Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 30;64(Pt 5):m747. doi: 10.1107/S1600536808012373

Bis(benzo-15-crown-5-κ5 O)strontium bis­(triiodide)

Christine Walbaum a, Ingo Pantenburg a,*, Gerd Meyer a
PMCID: PMC2961288  PMID: 21202264

Abstract

The title compound, [Sr(C14H20O5)2](I3)2, obtained by slow evaporation of an ethanol/dichloro­methane solution (1:1) of SrCl2, benzo-15-crown-5 and I2, is built of sandwich-like [Sr(benzo-15-crown-5)2]2+ cations and isolated linear I3 anions which are arranged in alternating layers parallel to (010). The triiodide anions are located in general positions, whereas the cations are located on centres of inversion.

Related literature

For related literature, see: Pantenburg et al. (2002); Walbaum et al. (2007) and references cited therein. For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-64-0m747-scheme1.jpg

Experimental

Crystal data

  • [Sr(C14H20O5)2](I3)2

  • M r = 1385.62

  • Monoclinic, Inline graphic

  • a = 12.0127 (17) Å

  • b = 12.8666 (12) Å

  • c = 13.085 (2) Å

  • β = 90.245 (18)°

  • V = 2022.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.96 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.15 mm

Data collection

  • Stoe IPDS-I diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)] T min = 0.393, T max = 0.465

  • 18994 measured reflections

  • 4869 independent reflections

  • 1779 reflections with I > 2σ(I)

  • R int = 0.124

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.069

  • S = 0.71

  • 4869 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: CIF-Editor (Wieczorrek, 2004).

Supplementary Material

Crystal structure: contains datablocks global_, I. DOI: 10.1107/S1600536808012373/nc2102sup1.cif

e-64-0m747-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012373/nc2102Isup2.hkl

e-64-0m747-Isup2.hkl (233.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

I2—I1 2.8754 (13)
I2—I3 2.9210 (13)
Sr1—O13 2.679 (5)
Sr1—O13i 2.679 (5)
Sr1—O4 2.682 (5)
Sr1—O4i 2.682 (5)
Sr1—O1 2.691 (5)
Sr1—O1i 2.691 (5)
Sr1—O7i 2.706 (5)
Sr1—O7 2.706 (5)
Sr1—O10i 2.778 (5)
Sr1—O10 2.778 (5)
I1—I2—I3 177.54 (4)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Polyiodide anions are synthesized by the addition of elemental iodine to iodide ions and can be incorporated into crystalline solids in the presence of suitable cations. They show considerable diversity in I - I bond lengths, covering the whole range between a strongly covalent bond and the sum of the van der Waals radii of two iodine atoms. However, the bond lengths are never uniform. As a consequence, the structural diversity of polyiodide ions is remarkably high. To date, no systematic procedure for the synthesis and crystallization of iodine-rich polyiodides is known, and this remains the ultimate goal of our work. We try to control the structures and composition of polyiodide matrices by variation of the shape, charge and size of the corresponding cations. In previous work, we have shown that bulky low-charged cations of the general formula [M(crown-ether)]x+ (where M is an element of group 1 or 2, or a rare earth-metal, crown-ether is benzo-18-crown-6, benzo-15-crown-5 or dibenzo-18-crown-6 and x = 1, 2 or 3) positively influence the stabilitity of polyiodides in the solid state (Walbaum et al., 2007).

[Sr(benzo-15-crown-5)2](I3)2 is isotypic with the respective Ba compound (Pantenburg et al., 2002). The Sr2+ ion (2a; 1,0,1) is located slightly above the centre of two benzo-15-crown ligands and coordinated in a sandwich-like manner by ten O atoms. The Sr—O distances vary between 2.679 (5) Å and 2.778 (5) Å (Table 1). Distances and angles within the crown-ether moiety are in good agreement with published data [mean values from the Cambridge Structural Database (Allen, 2002): CH2—O = 1.43 (3) Å, CH2—CH2 = 1.51 (2) Å, O—CH2—CH2 = 108.9 (13)°, CH2—O—CH2 = 111.4 (10)°]. The triiodide anion is almost symmetrical (I1—I2 = 2.8754 (13) Å, I2—I3 = 2.9210 (13) Å) and only slightly angular (I1—I2—I3 = 177.54 (4)°).

Although polyiodide ions tend to form even larger arrays through weak attractions between the anions, the shortest distance between the triiodide anions in [Sr(benzo-15-crown-5)2](I3)2 is 4.6623 (19) Å (I2—I1i; (i) = -x + 2, -y + 1, -z + 2) (Fig. 2). Thus, the anions may be considered as isolated. Distances between the [Sr(benzo-15-crown-5)2]2+ cations and the anions are also rather large, beginning with (I—H) = 3.138 (1) Å, (I—C) = 3.872 (9) Å, and (I—O) = 3.896 (5) Å.

Experimental

[Sr(benzo-15-crown-5)2](I3)2 was prepared by dissolving SrCl2 (0.05 g, 0.3 mmol), C14H20O5 (0.08 g, 0.3 mmol), and I2 (0.08 g, 0.3 mmol) in ethanol/dichloromethane (1:1) (40 ml). Red crystals were obtained after a few days by slow evaporation of the solvent under ambient conditions.

Refinement

The H atom were placed in idealized positions and constrained to ride on their parent atom, with C(ar)—H distances of 0.930 Å and Uiso(H) values of 0.081 Å2 and C(al)—H distances of 0.970 Å and Uiso(H) values of 0.092 Å2.

Figures

Fig. 1.

Fig. 1.

The structure of [Sr(benzo-15-crown-5)2](I3)2, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Dashed lines denote Sr—O contacts. H atoms are omitted for clarity. Symmetry code: (i) = -x + 2, -y, -z + 2.

Fig. 2.

Fig. 2.

A projection of the structure of [Sr(benzo-15-crown-5)2](I3)2 along the ab plane. Hydrogen atoms are omitted for clarity.

Crystal data

[Sr(C14H20O5)2](I3)2 F000 = 1288
Mr = 1385.62 Dx = 2.275 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1765 reflections
a = 12.0127 (17) Å θ = 2.8–28.1º
b = 12.8666 (12) Å µ = 5.96 mm1
c = 13.085 (2) Å T = 293 (2) K
β = 90.245 (18)º Polyhedron, red
V = 2022.5 (5) Å3 0.2 × 0.2 × 0.15 mm
Z = 2

Data collection

Stoe IPDS-I diffractometer 4869 independent reflections
Radiation source: fine-focus sealed tube 1779 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.124
Detector resolution: not measured pixels mm-1 θmax = 28.1º
T = 293(2) K θmin = 2.8º
φ scans h = −15→15
Absorption correction: numerical[X-RED (Stoe & Cie, 2001); after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999)] k = −16→17
Tmin = 0.393, Tmax = 0.465 l = −17→17
18994 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.069   w = 1/[σ2(Fo2) + (0.0175P)2] where P = (Fo2 + 2Fc2)/3
S = 0.71 (Δ/σ)max = 0.001
4869 reflections Δρmax = 0.54 e Å3
207 parameters Δρmin = −0.72 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. The scattering intensities were collected on an imaging plate diffractometer (IPDS I, Stoe & Cie) equipped with a fine focus sealed tube X-ray source (Mo Kα, λ = 0.71073 Å) operating at 50 kV and 40 mA. Intensity data for the title compound were collected at room temperature by φ-scans in 100 frames (0 < φ < 200°, Δφ = 2°, exposure time of 7 min) in the 2 Θ range 3.8 to 56.3°. Structure solution and refinement were carried out using the programs SIR92 (Altomare et al., 1993) and SHELXL97 (Sheldrick, 1997). A numerical absorption correction (X-RED (Stoe & Cie, 2001) was applied after optimization of the crystal shape (X-SHAPE (Stoe & Cie, 1999)). The last cycles of refinement included atomic positions for all atoms, anisotropic parameters for all non-hydrogen atoms and isotropic thermal parameters for all hydrogen atoms. The final difference maps were free of any chemically significant features. The refinement was based on F2 for ALL reflections.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I2 1.13518 (5) 0.42408 (4) 1.15064 (4) 0.05056 (16)
I3 1.05971 (6) 0.38042 (5) 1.35816 (5) 0.0757 (2)
I1 1.21912 (7) 0.46748 (4) 0.94966 (5) 0.0820 (2)
Sr1 1.0000 0.0000 1.0000 0.0349 (3)
O10 1.1629 (5) 0.1317 (4) 1.0776 (4) 0.0519 (15)
O4 1.1188 (5) −0.1460 (4) 0.9031 (4) 0.0641 (17)
O7 1.1714 (4) 0.0601 (4) 0.8803 (4) 0.0541 (15)
O13 1.0602 (4) −0.0068 (4) 1.1973 (3) 0.0508 (14)
O1 1.0583 (5) −0.1762 (3) 1.0971 (4) 0.0479 (14)
C19 1.0374 (6) −0.1842 (5) 1.1998 (6) 0.040 (2)
C2 1.0947 (9) −0.2637 (6) 1.0413 (7) 0.074 (3)
H2A 1.1444 −0.3049 1.0836 0.092 (8)*
H2B 1.0311 −0.3065 1.0234 0.092 (8)*
C3 1.1501 (10) −0.2336 (7) 0.9523 (8) 0.092 (4)
H3A 1.2284 −0.2265 0.9693 0.092 (8)*
H3B 1.1439 −0.2905 0.9040 0.092 (8)*
C14 1.0380 (6) −0.0936 (5) 1.2541 (6) 0.0406 (19)
C9 1.2562 (8) 0.1596 (7) 1.0116 (7) 0.066 (3)
H9A 1.2834 0.2283 1.0293 0.092 (8)*
H9B 1.3166 0.1104 1.0210 0.092 (8)*
C12 1.1048 (7) 0.0853 (5) 1.2453 (6) 0.048 (2)
H12A 1.1309 0.0693 1.3138 0.092 (8)*
H12B 1.0478 0.1385 1.2500 0.092 (8)*
C11 1.1984 (7) 0.1221 (6) 1.1812 (6) 0.054 (2)
H11A 1.2244 0.1889 1.2061 0.092 (8)*
H11B 1.2597 0.0732 1.1856 0.092 (8)*
C8 1.2194 (8) 0.1583 (6) 0.9073 (7) 0.064 (3)
H8A 1.1646 0.2127 0.8969 0.092 (8)*
H8B 1.2820 0.1724 0.8629 0.092 (8)*
C6 1.2505 (7) −0.0175 (7) 0.8513 (7) 0.065 (3)
H6A 1.3005 −0.0323 0.9079 0.092 (8)*
H6B 1.2944 0.0068 0.7940 0.092 (8)*
C5 1.1885 (8) −0.1121 (6) 0.8224 (7) 0.070 (3)
H5A 1.1434 −0.0980 0.7623 0.092 (8)*
H5B 1.2407 −0.1669 0.8054 0.092 (8)*
C18 1.0111 (7) −0.2778 (6) 1.2495 (6) 0.048 (2)
H18 1.0087 −0.3400 1.2134 0.081 (15)*
C15 1.0124 (7) −0.0933 (6) 1.3557 (6) 0.056 (2)
H15 1.0119 −0.0309 1.3915 0.081 (15)*
C16 0.9875 (8) −0.1844 (7) 1.4055 (7) 0.064 (3)
H16 0.9698 −0.1837 1.4746 0.081 (15)*
C17 0.9890 (7) −0.2757 (7) 1.3526 (8) 0.063 (3)
H17 0.9748 −0.3377 1.3868 0.081 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I2 0.0578 (4) 0.0404 (3) 0.0535 (3) −0.0024 (3) −0.0036 (3) −0.0060 (2)
I3 0.0831 (5) 0.0782 (4) 0.0659 (4) −0.0055 (4) 0.0195 (4) 0.0070 (3)
I1 0.1280 (7) 0.0605 (4) 0.0576 (4) 0.0092 (4) 0.0162 (4) 0.0063 (3)
Sr1 0.0393 (7) 0.0292 (5) 0.0362 (6) 0.0017 (5) −0.0024 (5) 0.0010 (4)
O10 0.058 (4) 0.048 (3) 0.049 (4) −0.011 (3) −0.013 (3) 0.003 (3)
O4 0.074 (5) 0.047 (3) 0.072 (4) 0.022 (3) 0.026 (4) 0.015 (3)
O7 0.045 (4) 0.046 (3) 0.072 (4) −0.006 (3) 0.014 (3) −0.007 (3)
O13 0.074 (4) 0.042 (3) 0.037 (3) −0.012 (3) −0.004 (3) 0.003 (2)
O1 0.070 (4) 0.037 (3) 0.037 (3) 0.009 (3) 0.001 (3) −0.003 (2)
C19 0.035 (5) 0.038 (4) 0.048 (5) 0.005 (4) −0.008 (4) 0.000 (4)
C2 0.108 (9) 0.035 (5) 0.078 (7) 0.023 (5) 0.022 (6) −0.005 (5)
C3 0.138 (11) 0.064 (6) 0.074 (7) 0.023 (6) 0.043 (7) 0.006 (6)
C14 0.036 (5) 0.039 (5) 0.047 (5) −0.009 (4) −0.002 (4) 0.006 (4)
C9 0.059 (7) 0.075 (6) 0.064 (7) −0.018 (5) −0.020 (6) 0.020 (5)
C12 0.060 (6) 0.042 (4) 0.041 (5) −0.009 (4) −0.004 (4) −0.007 (4)
C11 0.064 (7) 0.037 (4) 0.062 (6) −0.009 (4) −0.017 (5) 0.003 (4)
C8 0.053 (7) 0.056 (6) 0.084 (7) −0.012 (5) 0.007 (6) 0.008 (5)
C6 0.058 (7) 0.073 (6) 0.064 (6) 0.000 (5) 0.010 (5) −0.006 (5)
C5 0.079 (7) 0.060 (5) 0.071 (6) 0.005 (5) 0.032 (6) −0.004 (5)
C18 0.051 (6) 0.041 (5) 0.052 (6) −0.004 (4) −0.002 (5) 0.010 (4)
C15 0.053 (6) 0.062 (6) 0.054 (6) −0.008 (4) 0.007 (5) 0.005 (5)
C16 0.065 (7) 0.080 (7) 0.045 (6) 0.000 (5) 0.006 (5) 0.018 (5)
C17 0.049 (6) 0.062 (6) 0.078 (7) 0.002 (5) 0.000 (5) 0.037 (5)

Geometric parameters (Å, °)

I2—I1 2.8754 (13) C2—H2B 0.9700
I2—I3 2.9210 (13) C3—H3A 0.9700
Sr1—O13 2.679 (5) C3—H3B 0.9700
Sr1—O13i 2.679 (5) C14—C15 1.365 (10)
Sr1—O4 2.682 (5) C9—C8 1.434 (11)
Sr1—O4i 2.682 (5) C9—H9A 0.9700
Sr1—O1 2.691 (5) C9—H9B 0.9700
Sr1—O1i 2.691 (5) C12—C11 1.483 (10)
Sr1—O7i 2.706 (5) C12—H12A 0.9700
Sr1—O7 2.706 (5) C12—H12B 0.9700
Sr1—O10i 2.778 (5) C11—H11A 0.9700
Sr1—O10 2.778 (5) C11—H11B 0.9700
O10—C11 1.424 (9) C8—H8A 0.9700
O10—C9 1.463 (10) C8—H8B 0.9700
O4—C3 1.350 (10) C6—C5 1.475 (11)
O4—C5 1.418 (9) C6—H6A 0.9700
O7—C6 1.431 (9) C6—H6B 0.9700
O7—C8 1.431 (9) C5—H5A 0.9700
O13—C14 1.369 (8) C5—H5B 0.9700
O13—C12 1.443 (8) C18—C17 1.377 (11)
O1—C19 1.371 (8) C18—H18 0.9300
O1—C2 1.411 (8) C15—C16 1.374 (10)
C19—C14 1.365 (9) C15—H15 0.9300
C19—C18 1.405 (9) C16—C17 1.364 (11)
C2—C3 1.399 (11) C16—H16 0.9300
C2—H2A 0.9700 C17—H17 0.9300
I1—I2—I3 177.54 (4) C3—C2—O1 111.1 (7)
O13—Sr1—O13i 180.0 C3—C2—H2A 109.4
O13—Sr1—O4 106.92 (17) O1—C2—H2A 109.4
O13i—Sr1—O4 73.08 (17) C3—C2—H2B 109.4
O13—Sr1—O4i 73.08 (17) O1—C2—H2B 109.4
O13i—Sr1—O4i 106.92 (17) H2A—C2—H2B 108.0
O4—Sr1—O4i 180.000 (1) O4—C3—C2 119.7 (8)
O13—Sr1—O1 56.56 (14) O4—C3—H3A 107.4
O13i—Sr1—O1 123.44 (15) C2—C3—H3A 107.4
O4—Sr1—O1 59.66 (16) O4—C3—H3B 107.4
O4i—Sr1—O1 120.34 (16) C2—C3—H3B 107.4
O13—Sr1—O1i 123.44 (15) H3A—C3—H3B 106.9
O13i—Sr1—O1i 56.56 (14) C15—C14—C19 120.6 (7)
O4—Sr1—O1i 120.34 (16) C15—C14—O13 124.8 (7)
O4i—Sr1—O1i 59.66 (16) C19—C14—O13 114.5 (7)
O1—Sr1—O1i 180.000 (1) C8—C9—O10 109.0 (7)
O13—Sr1—O7i 68.65 (16) C8—C9—H9A 109.9
O13i—Sr1—O7i 111.35 (16) O10—C9—H9A 109.9
O4—Sr1—O7i 118.78 (16) C8—C9—H9B 109.9
O4i—Sr1—O7i 61.22 (16) O10—C9—H9B 109.9
O1—Sr1—O7i 71.51 (16) H9A—C9—H9B 108.3
O1i—Sr1—O7i 108.49 (16) O13—C12—C11 107.3 (6)
O13—Sr1—O7 111.35 (16) O13—C12—H12A 110.3
O13i—Sr1—O7 68.65 (16) C11—C12—H12A 110.3
O4—Sr1—O7 61.22 (16) O13—C12—H12B 110.3
O4i—Sr1—O7 118.78 (16) C11—C12—H12B 110.3
O1—Sr1—O7 108.49 (16) H12A—C12—H12B 108.5
O1i—Sr1—O7 71.51 (16) O10—C11—C12 110.0 (7)
O7i—Sr1—O7 180.0 O10—C11—H11A 109.7
O13—Sr1—O10i 121.28 (15) C12—C11—H11A 109.7
O13i—Sr1—O10i 58.72 (15) O10—C11—H11B 109.7
O4—Sr1—O10i 77.00 (18) C12—C11—H11B 109.7
O4i—Sr1—O10i 103.00 (18) H11A—C11—H11B 108.2
O1—Sr1—O10i 80.80 (16) O7—C8—C9 111.6 (7)
O1i—Sr1—O10i 99.20 (16) O7—C8—H8A 109.3
O7i—Sr1—O10i 60.03 (17) C9—C8—H8A 109.3
O7—Sr1—O10i 119.97 (17) O7—C8—H8B 109.3
O13—Sr1—O10 58.72 (15) C9—C8—H8B 109.3
O13i—Sr1—O10 121.28 (15) H8A—C8—H8B 108.0
O4—Sr1—O10 103.00 (18) O7—C6—C5 108.0 (7)
O4i—Sr1—O10 77.00 (18) O7—C6—H6A 110.1
O1—Sr1—O10 99.20 (16) C5—C6—H6A 110.1
O1i—Sr1—O10 80.80 (16) O7—C6—H6B 110.1
O7i—Sr1—O10 119.97 (17) C5—C6—H6B 110.1
O7—Sr1—O10 60.03 (17) H6A—C6—H6B 108.4
O10i—Sr1—O10 180.00 (17) O4—C5—C6 111.3 (7)
C11—O10—C9 110.9 (6) O4—C5—H5A 109.4
C11—O10—Sr1 120.1 (4) C6—C5—H5A 109.4
C9—O10—Sr1 118.3 (4) O4—C5—H5B 109.4
C3—O4—C5 116.6 (7) C6—C5—H5B 109.4
C3—O4—Sr1 120.4 (5) H5A—C5—H5B 108.0
C5—O4—Sr1 116.9 (4) C17—C18—C19 118.9 (8)
C6—O7—C8 114.5 (6) C17—C18—H18 120.6
C6—O7—Sr1 117.5 (4) C19—C18—H18 120.6
C8—O7—Sr1 114.6 (4) C14—C15—C16 120.6 (8)
C14—O13—C12 120.4 (5) C14—C15—H15 119.7
C14—O13—Sr1 119.8 (4) C16—C15—H15 119.7
C12—O13—Sr1 119.4 (4) C17—C16—C15 119.4 (8)
C19—O1—C2 120.4 (6) C17—C16—H16 120.3
C19—O1—Sr1 118.5 (4) C15—C16—H16 120.3
C2—O1—Sr1 120.5 (5) C16—C17—C18 121.1 (8)
C14—C19—O1 116.5 (6) C16—C17—H17 119.5
C14—C19—C18 119.4 (7) C18—C17—H17 119.5
O1—C19—C18 124.1 (7)

Symmetry codes: (i) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2102).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  4. Brandenburg, K. (2004). DIAMOND Bonn, Germany.
  5. Pantenburg, I., Hohn, F. & Tebbe, K.-F. (2002). Z. Anorg. Allg. Chem.628, 383–388.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (1996). IPDS Stoe & Cie, Darmstadt, Germany.
  8. Stoe & Cie (1999). X-SHAPE Stoe & Cie, Darmstadt, Germany.
  9. Stoe & Cie (2001). X-RED Stoe & Cie, Darmstadt, Germany.
  10. Walbaum, C., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem.633, 1609–1617.
  11. Wieczorrek, C. (2004). CIF-Editor Universität zu Köln, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global_, I. DOI: 10.1107/S1600536808012373/nc2102sup1.cif

e-64-0m747-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012373/nc2102Isup2.hkl

e-64-0m747-Isup2.hkl (233.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES