Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Aug;94(2):546–554. doi: 10.1172/JCI117368

Substitution of arginine-839 by cysteine or histidine in the androgen receptor causes different receptor phenotypes in cultured cells and coordinate degrees of clinical androgen resistance.

L K Beitel 1, P Kazemi-Esfarjani 1, M Kaufman 1, R Lumbroso 1, A M DiGeorge 1, D W Killinger 1, M A Trifiro 1, L Pinsky 1
PMCID: PMC296129  PMID: 8040309

Abstract

We aim to correlate point mutations in the androgen receptor gene with receptor phenotypes and with clinical phenotypes of androgen resistance. In two families, the external genitalia were predominantly female at birth, and sex-of-rearing has been female. Their androgen receptor mutation changed arginine-839 to histidine. In a third family, the external genitalia were predominantly male at birth, and sex-of-rearing has been male: their codon 839 has mutated to cysteine. In genital skin fibroblasts, both mutant receptors have a normal androgen-binding capacity, but they differ in selected indices of decreased affinity for 5 alpha-dihydrotestosterone or two synthetic androgens. In transiently cotransfected androgen-treated COS-1 cells, both mutant receptors transactivate a reporter gene subnormally. The His-839 mutant is less active than its partner, primarily because its androgen-binding activity is more unstable during prolonged exposure to androgen. Adoption of a nonbinding state explains a part of this instability. In four other steroid receptors, another dibasic amino acid, lysine, occupies the position of arginine-839 in the androgen receptor. Androgen receptors with histidine or cysteine at position 839 are distinctively dysfunctional and appear to cause different clinical degrees of androgen resistance.

Full text

PDF
546

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Scheller A., Robins D. M. The stringency and magnitude of androgen-specific gene activation are combinatorial functions of receptor and nonreceptor binding site sequences. Mol Cell Biol. 1993 Oct;13(10):6326–6335. doi: 10.1128/mcb.13.10.6326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akin J. W., Behzadian A., Tho S. P., McDonough P. G. Evidence for a partial deletion in the androgen receptor gene in a phenotypic male with azoospermia. Am J Obstet Gynecol. 1991 Dec;165(6 Pt 1):1891–1894. doi: 10.1016/0002-9378(91)90052-s. [DOI] [PubMed] [Google Scholar]
  3. Batch J. A., Williams D. M., Davies H. R., Brown B. D., Evans B. A., Hughes I. A., Patterson M. N. Androgen receptor gene mutations identified by SSCP in fourteen subjects with androgen insensitivity syndrome. Hum Mol Genet. 1992 Oct;1(7):497–503. doi: 10.1093/hmg/1.7.497. [DOI] [PubMed] [Google Scholar]
  4. Beitel L. K., Prior L., Vasiliou D. M., Gottlieb B., Kaufman M., Lumbroso R., Alvarado C., McGillivray B., Trifiro M., Pinsky L. Complete androgen insensitivity due to mutations in the probable alpha-helical segments of the DNA-binding domain in the human androgen receptor. Hum Mol Genet. 1994 Jan;3(1):21–27. doi: 10.1093/hmg/3.1.21. [DOI] [PubMed] [Google Scholar]
  5. Brinkmann A. O., Faber P. W., van Rooij H. C., Kuiper G. G., Ris C., Klaassen P., van der Korput J. A., Voorhorst M. M., van Laar J. H., Mulder E. The human androgen receptor: domain structure, genomic organization and regulation of expression. J Steroid Biochem. 1989;34(1-6):307–310. doi: 10.1016/0022-4731(89)90098-8. [DOI] [PubMed] [Google Scholar]
  6. Brown T. R., Lubahn D. B., Wilson E. M., French F. S., Migeon C. J., Corden J. L. Functional characterization of naturally occurring mutant androgen receptors from subjects with complete androgen insensitivity. Mol Endocrinol. 1990 Dec;4(12):1759–1772. doi: 10.1210/mend-4-12-1759. [DOI] [PubMed] [Google Scholar]
  7. Brown T. R., Lubahn D. B., Wilson E. M., Joseph D. R., French F. S., Migeon C. J. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: evidence for further genetic heterogeneity in this syndrome. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8151–8155. doi: 10.1073/pnas.85.21.8151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang C. S., Kokontis J., Liao S. T. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7211–7215. doi: 10.1073/pnas.85.19.7211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Bellis A., Quigley C. A., Cariello N. F., el-Awady M. K., Sar M., Lane M. V., Wilson E. M., French F. S. Single base mutations in the human androgen receptor gene causing complete androgen insensitivity: rapid detection by a modified denaturing gradient gel electrophoresis technique. Mol Endocrinol. 1992 Nov;6(11):1909–1920. doi: 10.1210/mend.6.11.1480178. [DOI] [PubMed] [Google Scholar]
  10. De Bellis A., Quigley C. A., Marschke K. B., el-Awady M. K., Lane M. V., Smith E. P., Sar M., Wilson E. M., French F. S. Characterization of mutant androgen receptors causing partial androgen insensitivity syndrome. J Clin Endocrinol Metab. 1994 Mar;78(3):513–522. doi: 10.1210/jcem.78.3.8126121. [DOI] [PubMed] [Google Scholar]
  11. Edwards A., Hammond H. A., Jin L., Caskey C. T., Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. doi: 10.1016/0888-7543(92)90371-x. [DOI] [PubMed] [Google Scholar]
  12. Gottlieb B., Kaufman M., Pinsky L., Leboeuf G., Sotos J. F. Extracellular correction of the androgen-receptor transformation defect in two families with complete androgen resistance. J Steroid Biochem. 1987 Sep;28(3):279–284. doi: 10.1016/0022-4731(87)91019-3. [DOI] [PubMed] [Google Scholar]
  13. Griffin J. E., Punyashthiti K., Wilson J. D. Dihydrotestosterone binding by cultured human fibroblasts. Comparison of cells from control subjects and from patients with hereditary male pseudohermaphroditism due to androgen resistance. J Clin Invest. 1976 May;57(5):1342–1351. doi: 10.1172/JCI108402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hiort O., Huang Q., Sinnecker G. H., Sadeghi-Nejad A., Kruse K., Wolfe H. J., Yandell D. W. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: application for diagnosis, genetic counseling, and therapy. J Clin Endocrinol Metab. 1993 Jul;77(1):262–266. doi: 10.1210/jcem.77.1.8325950. [DOI] [PubMed] [Google Scholar]
  15. Jakubiczka S., Werder E. A., Wieacker P. Point mutation in the steroid-binding domain of the androgen receptor gene in a family with complete androgen insensitivity syndrome (CAIS). Hum Genet. 1992 Nov;90(3):311–312. doi: 10.1007/BF00220088. [DOI] [PubMed] [Google Scholar]
  16. Kaufman M., Pinsky L., Gottlieb B., Schweitzer M., Brezezinski A., von Westarp C., Ginsberg J. Androgen receptor defects in patients with minimal and partial androgen resistance classified according to a model of androgen-receptor complex energy states. Horm Res. 1990;33(2-4):87–94. doi: 10.1159/000181489. [DOI] [PubMed] [Google Scholar]
  17. Kaufman M., Straisfeld C., Pinsky L. Male pseudohermaphroditism presumably due to target organ unresponsiveness to androgens. Deficient 5alpha-dihydrotestosterone binding in cultured skin fibroblasts. J Clin Invest. 1976 Aug;58(2):345–350. doi: 10.1172/JCI108478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kazemi-Esfarjani P., Beitel L. K., Trifiro M., Kaufman M., Rennie P., Sheppard P., Matusik R., Pinsky L. Substitution of valine-865 by methionine or leucine in the human androgen receptor causes complete or partial androgen insensitivity, respectively with distinct androgen receptor phenotypes. Mol Endocrinol. 1993 Jan;7(1):37–46. doi: 10.1210/mend.7.1.8446106. [DOI] [PubMed] [Google Scholar]
  19. Keenan B. S., Meyer W. J., 3rd, Hadjian A. J., Jones H. W., Migeon C. J. Syndrome of androgen insensitivity in man: absence of 5 alpha-dihydrotestosterone binding protein in skin fibroblasts. J Clin Endocrinol Metab. 1974 Jun;38(6):1143–1146. doi: 10.1210/jcem-38-6-1143. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lubahn D. B., Joseph D. R., Sar M., Tan J., Higgs H. N., Larson R. E., French F. S., Wilson E. M. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol Endocrinol. 1988 Dec;2(12):1265–1275. doi: 10.1210/mend-2-12-1265. [DOI] [PubMed] [Google Scholar]
  22. Marcelli M., Tilley W. D., Wilson C. M., Wilson J. D., Griffin J. E., McPhaul M. J. A single nucleotide substitution introduces a premature termination codon into the androgen receptor gene of a patient with receptor-negative androgen resistance. J Clin Invest. 1990 May;85(5):1522–1528. doi: 10.1172/JCI114599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marcelli M., Tilley W. D., Zoppi S., Griffin J. E., Wilson J. D., McPhaul M. J. Androgen resistance associated with a mutation of the androgen receptor at amino acid 772 (Arg----Cys) results from a combination of decreased messenger ribonucleic acid levels and impairment of receptor function. J Clin Endocrinol Metab. 1991 Aug;73(2):318–325. doi: 10.1210/jcem-73-2-318. [DOI] [PubMed] [Google Scholar]
  24. McPhaul M. J., Marcelli M., Tilley W. D., Griffin J. E., Isidro-Gutierrez R. F., Wilson J. D. Molecular basis of androgen resistance in a family with a qualitative abnormality of the androgen receptor and responsive to high-dose androgen therapy. J Clin Invest. 1991 Apr;87(4):1413–1421. doi: 10.1172/JCI115147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McPhaul M. J., Marcelli M., Zoppi S., Wilson C. M., Griffin J. E., Wilson J. D. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene. J Clin Invest. 1992 Nov;90(5):2097–2101. doi: 10.1172/JCI116093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakao R., Haji M., Yanase T., Ogo A., Takayanagi R., Katsube T., Fukumaki Y., Nawata H. A single amino acid substitution (Met786----Val) in the steroid-binding domain of human androgen receptor leads to complete androgen insensitivity syndrome. J Clin Endocrinol Metab. 1992 May;74(5):1152–1157. doi: 10.1210/jcem.74.5.1569163. [DOI] [PubMed] [Google Scholar]
  27. Pinsky L., Kaufman M., Levitsky L. L. Partial androgen resistance due to a distinctive qualitative defect of the androgen receptor. Am J Med Genet. 1987 Jun;27(2):459–466. doi: 10.1002/ajmg.1320270224. [DOI] [PubMed] [Google Scholar]
  28. Pinsky L., Trifiro M., Kaufman M., Beitel L. K., Mhatre A., Kazemi-Esfarjani P., Sabbaghian N., Lumbroso R., Alvarado C., Vasiliou M. Androgen resistance due to mutation of the androgen receptor. Clin Invest Med. 1992 Oct;15(5):456–472. [PubMed] [Google Scholar]
  29. Prior L., Bordet S., Trifiro M. A., Mhatre A., Kaufman M., Pinsky L., Wrogeman K., Belsham D. D., Pereira F., Greenberg C. Replacement of arginine 773 by cysteine or histidine in the human androgen receptor causes complete androgen insensitivity with different receptor phenotypes. Am J Hum Genet. 1992 Jul;51(1):143–155. [PMC free article] [PubMed] [Google Scholar]
  30. Ris-Stalpers C., Kuiper G. G., Faber P. W., Schweikert H. U., van Rooij H. C., Zegers N. D., Hodgins M. B., Degenhart H. J., Trapman J., Brinkmann A. O. Aberrant splicing of androgen receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7866–7870. doi: 10.1073/pnas.87.20.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ris-Stalpers C., Trifiro M. A., Kuiper G. G., Jenster G., Romalo G., Sai T., van Rooij H. C., Kaufman M., Rosenfield R. L., Liao S. Substitution of aspartic acid-686 by histidine or asparagine in the human androgen receptor leads to a functionally inactive protein with altered hormone-binding characteristics. Mol Endocrinol. 1991 Oct;5(10):1562–1569. doi: 10.1210/mend-5-10-1562. [DOI] [PubMed] [Google Scholar]
  32. Rossini G. P., Liao S. Intracellular inactivation, reactivation and dynamic status of prostate androgen receptors. Biochem J. 1982 Nov 15;208(2):383–392. doi: 10.1042/bj2080383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sai T. J., Seino S., Chang C. S., Trifiro M., Pinsky L., Mhatre A., Kaufman M., Lambert B., Trapman J., Brinkmann A. O. An exonic point mutation of the androgen receptor gene in a family with complete androgen insensitivity. Am J Hum Genet. 1990 Jun;46(6):1095–1100. [PMC free article] [PubMed] [Google Scholar]
  34. Tilley W. D., Marcelli M., Wilson J. D., McPhaul M. J. Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci U S A. 1989 Jan;86(1):327–331. doi: 10.1073/pnas.86.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Trapman J., Klaassen P., Kuiper G. G., van der Korput J. A., Faber P. W., van Rooij H. C., Geurts van Kessel A., Voorhorst M. M., Mulder E., Brinkmann A. O. Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem Biophys Res Commun. 1988 May 31;153(1):241–248. doi: 10.1016/s0006-291x(88)81214-2. [DOI] [PubMed] [Google Scholar]
  36. Trifiro M., Gottlieb B., Pinsky L., Kaufman M., Prior L., Belsham D. D., Wrogemann K., Brown C. J., Willard H. F., Trapman J. The 56/58 kDa androgen-binding protein in male genital skin fibroblasts with a deleted androgen receptor gene. Mol Cell Endocrinol. 1991 Jan;75(1):37–47. doi: 10.1016/0303-7207(91)90243-l. [DOI] [PubMed] [Google Scholar]
  37. Trifiro M., Prior R. L., Sabbaghian N., Pinsky L., Kaufman M., Nylen E. G., Belsham D. D., Greenberg C. R., Wrogemann K. Amber mutation creates a diagnostic MaeI site in the androgen receptor gene of a family with complete androgen insensitivity. Am J Med Genet. 1991 Sep 15;40(4):493–499. doi: 10.1002/ajmg.1320400425. [DOI] [PubMed] [Google Scholar]
  38. Tzukerman M. T., Esty A., Santiso-Mere D., Danielian P., Parker M. G., Stein R. B., Pike J. W., McDonnell D. P. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol. 1994 Jan;8(1):21–30. doi: 10.1210/mend.8.1.8152428. [DOI] [PubMed] [Google Scholar]
  39. Zegers N. D., Claassen E., Neelen C., Mulder E., van Laar J. H., Voorhorst M. M., Berrevoets C. A., Brinkmann A. O., van der Kwast T. H., Ruizeveld de Winter J. A. Epitope prediction and confirmation for the human androgen receptor: generation of monoclonal antibodies for multi-assay performance following the synthetic peptide strategy. Biochim Biophys Acta. 1991 Jan 23;1073(1):23–32. doi: 10.1016/0304-4165(91)90178-j. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES