Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 4;64(Pt 5):o799. doi: 10.1107/S1600536808008726

3,5-Dibromo-2-hydroxy­benzaldehyde

Ying Fan a, Wei You a, Hui-Fen Qian a, Jian-Lan Liu a,*, Wei Huang b,*
PMCID: PMC2961300  PMID: 21202291

Abstract

The title compound, C7H4Br2O2, exhibits a layer packing structure via weak π–π stacking inter­actions [centroid–centroid distances between adjacent aromatic rings are 4.040 (8) and 3.776 (7) Å]. Mol­ecules in each layer are linked by inter­molecular O—H⋯O hydrogen bonding and Br⋯Br inter­actions [3.772 (4) Å]. There are two mol­ecules in the asymmetric unit.

Related literature

For related compounds, see Harkat et al. (2008); Lu et al. (2006); Duan et al. (2007); Zhang et al. (2007).graphic file with name e-64-0o799-scheme1.jpg

Experimental

Crystal data

  • C7H4Br2O2

  • M r = 279.92

  • Monoclinic, Inline graphic

  • a = 16.474 (8) Å

  • b = 14.025 (10) Å

  • c = 7.531 (7) Å

  • β = 103.212 (2)°

  • V = 1694 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.52 mm−1

  • T = 291 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.450, T max = 0.450 (expected range = 0.386–0.386)

  • 8777 measured reflections

  • 3328 independent reflections

  • 1670 reflections with I > 2σ(I)

  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.105

  • S = 0.79

  • 3328 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008726/at2547sup1.cif

e-64-0o799-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008726/at2547Isup2.hkl

e-64-0o799-Isup2.hkl (163.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.94 2.660 (6) 146
O4—H4A⋯O3 0.82 2.01 2.713 (6) 143
O4—H4A⋯O1i 0.82 2.29 2.863 (6) 128
C7—H7⋯O3ii 0.93 2.55 3.122 (8) 120

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

WH acknowledges the National Natural Science Found­ation of China (No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial support.

supplementary crystallographic information

Comment

Slicylaldehyde and its derivatives are an important class of compounds which can be used in a variety of studies such as organic synthesis, catalyst, drug design, spicery industry and life science and so on (Harkat et al., 2008). In the past few decades, a continuing attention has been drawn to the derivatives of the salicylaldehyde and their metal complexes for the investigation of luminescent properties which could be finely tuned by different substituent groups bonded to the phenolic ring (Lu et al., 2006; Duan et al., 2007; Zhang et al., 2007). In this paper, we report the X-ray structure of 3,5-dibromo-2-hydroxybenzaldehyde, (I).

The molecular structure of (I) is illustrated in Fig. 1. There are two crystallographically independent molecules in the asymmetric unit, and both of them are essentially planar with the dihedral angle of 1.82 (6)°.

The C—H···O and O—H···O hydrogen bonding interactions contribute to the stabilizations of the molecular and crystal structures (Fig. 2 and Table 1). A layer packing structure is formed with the mean interlayer separation of 4.040 (8) and 3.776 (7) Å for two sets of molecules. The centeroid-to-centeriod separations between the adjacent aromatic rings are 4.040 (8) and 3.776 (7) Å, respectively (Fig. 3), indicative of weak π–π stacking interactions.

Experimental

The title compound was obtained as received. Single crystals suitable for X-ray diffraction measurement were formed after 5 days in ethyl acetate by slow evaporation at room temperature in air. Analysis calculated for C7H4O4Br2: C 30.04, H 1.44%. Found: C 30.08, H 1.39%. FT—IR (KBr pellets, cm-1): 3180(m), 3069(m), 1681(versus), 1662(versus), 1597(m), 1448(s), 1408(s), 1281(versus), 1198(s), 1151(m), 1134(m), 1098(m), 919(s), 877(s), 712(m) and 677(s).

Refinement

The H atoms bonded with carbon atoms were placed in geometrically idealized positions (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

An ORTEP drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A perspective view of the intralayer intermolecular hydrogen-bond contacts among molecules in the title compound. Hydrogen bonds and Br–Br interactions are shown as dashed lines. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) - x + 1,-1/2 + y, 1/2 - z; (iii) x, -1 + y, z.]

Fig. 3.

Fig. 3.

A perspective view of the interlayer π–π stacking interactions together with the centroid–centroid contacts.

Crystal data

C7H4Br2O2 F000 = 1056
Mr = 279.92 Dx = 2.195 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1688 reflections
a = 16.474 (8) Å θ = 2.9–22.8º
b = 14.025 (10) Å µ = 9.52 mm1
c = 7.531 (7) Å T = 291 (2) K
β = 103.212 (2)º Block, yellow
V = 1694 (2) Å3 0.10 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 3328 independent reflections
Radiation source: fine-focus sealed tube 1670 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.109
T = 291(2) K θmax = 26.0º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −20→15
Tmin = 0.450, Tmax = 0.450 k = −17→16
8777 measured reflections l = −7→9

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045   w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106 (Δ/σ)max < 0.001
S = 0.79 Δρmax = 0.67 e Å3
3328 reflections Δρmin = −0.55 e Å3
202 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0018 (3)
Secondary atom site location: difference Fourier map

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.33358 (5) 0.40384 (5) 0.34454 (11) 0.0666 (3)
Br2 0.32451 (4) −0.00188 (5) 0.34528 (10) 0.0653 (3)
Br3 0.10268 (5) 0.96790 (5) 0.39100 (13) 0.0750 (3)
Br4 −0.12580 (4) 0.67358 (6) 0.46512 (11) 0.0727 (3)
C1 0.5095 (4) 0.1950 (4) 0.3046 (8) 0.0424 (15)
C2 0.4701 (4) 0.2838 (4) 0.3143 (8) 0.0455 (16)
C3 0.3876 (4) 0.2848 (5) 0.3376 (8) 0.0490 (17)
C4 0.3467 (4) 0.2004 (5) 0.3511 (9) 0.0539 (18)
H4 0.2925 0.2016 0.3681 0.065*
C5 0.3858 (4) 0.1130 (5) 0.3396 (8) 0.0504 (17)
C6 0.4670 (4) 0.1100 (5) 0.3151 (8) 0.0488 (17)
H6 0.4927 0.0518 0.3059 0.059*
C7 0.5945 (4) 0.1906 (5) 0.2718 (9) 0.0574 (19)
H7 0.6177 0.1306 0.2649 0.069*
C8 0.1215 (4) 0.6721 (5) 0.4036 (9) 0.0494 (17)
C9 0.1402 (4) 0.7692 (5) 0.3912 (8) 0.0456 (16)
C10 0.0787 (4) 0.8359 (4) 0.4063 (8) 0.0477 (17)
C11 0.0001 (4) 0.8089 (5) 0.4295 (9) 0.0542 (18)
H11 −0.0393 0.8548 0.4395 0.065*
C12 −0.0188 (4) 0.7110 (5) 0.4376 (9) 0.0510 (18)
C13 0.0415 (4) 0.6440 (5) 0.4260 (8) 0.0518 (17)
H13 0.0294 0.5795 0.4329 0.062*
C14 0.1838 (5) 0.5982 (5) 0.3899 (10) 0.066 (2)
H14 0.1689 0.5349 0.4011 0.079*
O1 0.6364 (3) 0.2604 (3) 0.2531 (7) 0.0702 (15)
O2 0.5114 (3) 0.3678 (3) 0.3080 (7) 0.0655 (13)
H2 0.5587 0.3568 0.2960 0.098*
O3 0.2528 (3) 0.6135 (3) 0.3652 (8) 0.0762 (15)
O4 0.2139 (2) 0.8015 (3) 0.3645 (7) 0.0563 (12)
H4A 0.2422 0.7563 0.3452 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0687 (5) 0.0551 (5) 0.0819 (6) 0.0197 (4) 0.0292 (4) 0.0055 (4)
Br2 0.0571 (5) 0.0538 (5) 0.0879 (6) −0.0152 (4) 0.0226 (4) −0.0017 (4)
Br3 0.0666 (5) 0.0371 (5) 0.1317 (8) 0.0011 (4) 0.0441 (5) −0.0014 (5)
Br4 0.0484 (5) 0.0764 (6) 0.0966 (6) −0.0142 (4) 0.0233 (4) 0.0000 (5)
C1 0.041 (4) 0.039 (4) 0.048 (4) −0.005 (3) 0.012 (3) 0.000 (3)
C2 0.054 (4) 0.034 (4) 0.049 (4) −0.005 (3) 0.012 (3) 0.004 (3)
C3 0.048 (4) 0.051 (5) 0.047 (4) 0.010 (3) 0.010 (3) −0.001 (4)
C4 0.043 (4) 0.060 (5) 0.060 (4) −0.003 (4) 0.016 (3) −0.004 (4)
C5 0.050 (4) 0.049 (5) 0.054 (4) −0.007 (3) 0.015 (3) −0.008 (4)
C6 0.040 (4) 0.046 (4) 0.060 (5) −0.003 (3) 0.011 (3) 0.001 (4)
C7 0.050 (4) 0.046 (5) 0.078 (5) 0.008 (3) 0.018 (4) 0.006 (4)
C8 0.053 (4) 0.041 (4) 0.055 (4) −0.004 (3) 0.014 (3) 0.003 (3)
C9 0.043 (4) 0.046 (4) 0.049 (4) 0.001 (3) 0.011 (3) −0.001 (3)
C10 0.049 (4) 0.041 (4) 0.055 (4) −0.002 (3) 0.015 (3) −0.001 (3)
C11 0.049 (4) 0.056 (5) 0.059 (4) 0.002 (4) 0.016 (3) −0.005 (4)
C12 0.041 (4) 0.063 (5) 0.052 (4) 0.001 (3) 0.018 (3) 0.007 (4)
C13 0.053 (4) 0.042 (4) 0.062 (5) −0.010 (3) 0.017 (3) 0.005 (4)
C14 0.077 (6) 0.035 (4) 0.091 (6) 0.013 (4) 0.028 (5) 0.011 (4)
O1 0.049 (3) 0.052 (3) 0.116 (4) −0.002 (3) 0.032 (3) 0.010 (3)
O2 0.057 (3) 0.045 (3) 0.098 (4) 0.001 (2) 0.026 (3) 0.004 (3)
O3 0.059 (3) 0.049 (3) 0.130 (5) 0.013 (3) 0.043 (3) 0.013 (3)
O4 0.037 (3) 0.041 (3) 0.097 (4) 0.001 (2) 0.029 (2) −0.002 (3)

Geometric parameters (Å, °)

Br1—C3 1.898 (6) C7—H7 0.9300
Br2—C5 1.906 (6) C8—C9 1.404 (9)
Br3—C10 1.902 (6) C8—C13 1.424 (8)
Br4—C12 1.895 (6) C8—C14 1.479 (9)
C1—C6 1.394 (8) C9—O4 1.355 (7)
C1—C2 1.413 (8) C9—C10 1.402 (8)
C1—C7 1.477 (8) C10—C11 1.398 (8)
C2—O2 1.368 (7) C11—C12 1.412 (9)
C2—C3 1.410 (8) C11—H11 0.9300
C3—C4 1.377 (8) C12—C13 1.384 (8)
C4—C5 1.397 (8) C13—H13 0.9300
C4—H4 0.9300 C14—O3 1.213 (8)
C5—C6 1.393 (8) C14—H14 0.9300
C6—H6 0.9300 O2—H2 0.8200
C7—O1 1.225 (7) O4—H4A 0.8200
C6—C1—C2 120.5 (6) C9—C8—C14 120.7 (6)
C6—C1—C7 118.7 (6) C13—C8—C14 119.4 (6)
C2—C1—C7 120.7 (6) O4—C9—C10 118.6 (6)
O2—C2—C3 119.8 (6) O4—C9—C8 123.5 (6)
O2—C2—C1 121.3 (6) C10—C9—C8 118.0 (6)
C3—C2—C1 118.9 (6) C11—C10—C9 122.4 (6)
C4—C3—C2 120.2 (6) C11—C10—Br3 118.9 (5)
C4—C3—Br1 120.9 (5) C9—C10—Br3 118.7 (5)
C2—C3—Br1 118.9 (5) C10—C11—C12 119.3 (6)
C3—C4—C5 120.6 (6) C10—C11—H11 120.4
C3—C4—H4 119.7 C12—C11—H11 120.4
C5—C4—H4 119.7 C13—C12—C11 119.3 (6)
C6—C5—C4 120.3 (6) C13—C12—Br4 121.2 (5)
C6—C5—Br2 120.5 (5) C11—C12—Br4 119.6 (5)
C4—C5—Br2 119.1 (5) C12—C13—C8 121.1 (6)
C5—C6—C1 119.5 (6) C12—C13—H13 119.4
C5—C6—H6 120.2 C8—C13—H13 119.4
C1—C6—H6 120.2 O3—C14—C8 125.1 (7)
O1—C7—C1 124.5 (6) O3—C14—H14 117.4
O1—C7—H7 117.7 C8—C14—H14 117.4
C1—C7—H7 117.7 C2—O2—H2 109.5
C9—C8—C13 119.9 (6) C9—O4—H4A 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.82 1.94 2.660 (6) 146
O4—H4A···O3 0.82 2.01 2.713 (6) 143
O4—H4A···O1i 0.82 2.29 2.863 (6) 128
C7—H7···O3ii 0.93 2.55 3.122 (8) 120

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2547).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Duan, X. F., Zeng, J., Zhang, Z. B. & Zi, G. F. (2007). J. Org. Chem.72, 10283–10286. [DOI] [PubMed]
  3. Harkat, H., Blanc, A., Weibel, J. M. & Pale, P. (2008). J. Org. Chem.73, 1620–1623. [DOI] [PubMed]
  4. Lu, Z. L., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem.45, 3538–3548. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535–m536.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008726/at2547sup1.cif

e-64-0o799-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008726/at2547Isup2.hkl

e-64-0o799-Isup2.hkl (163.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES