Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 2;64(Pt 5):o785. doi: 10.1107/S1600536808005989

Ethyl 4-amino-3-methyl­benzoate

Wen-Lan Song a, Dan Wang b, Xin-Hua Li a, De-Cai Wang a,*
PMCID: PMC2961301  PMID: 21202278

Abstract

The asymmetric unit of the title compound, C10H13NO2, contains two mol­ecules which are linked via an N—H⋯N hydrogen bonds to form a dimer. These dimers are further linked via N—H⋯O inter­molecular hydrogen bonds.

Related literature

For related literature, see: Baraldi et al. (1999, 2000, 2003, 2007); Wang et al. (2003); Zaffaroni et al. (2002). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o785-scheme1.jpg

Experimental

Crystal data

  • C10H13NO2

  • M r = 179.21

  • Triclinic, Inline graphic

  • a = 8.0110 (16) Å

  • b = 8.7030 (17) Å

  • c = 15.835 (3) Å

  • α = 90.78 (3)°

  • β = 95.13 (3)°

  • γ = 114.34 (3)°

  • V = 1000.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.975, T max = 0.991

  • 3874 measured reflections

  • 3594 independent reflections

  • 2146 reflections with I > 2σ(I)

  • R int = 0.052

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.176

  • S = 1.02

  • 3594 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005989/er2050sup1.cif

e-64-0o785-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005989/er2050Isup2.hkl

e-64-0o785-Isup2.hkl (176.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.33 3.023 (5) 138
N1—H1B⋯N2 0.86 2.61 3.242 (5) 131
N2—H2C⋯O2i 0.86 2.35 3.160 (4) 157
N2—H2D⋯O4ii 0.86 2.15 2.967 (4) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Shan Liu for useful discussions.

supplementary crystallographic information

Comment

Ethyl 3-methyl-4-aminobenzoate is a material for preparing the important intermidates of bis-(2-haloethyl)aminophenyl substituted distamycin derivatives(Baraldi et al., 2007), which are used as antitumor alkylating and antiviral agents related to the known antibiotic distamycin A (Baraldi et al., 1999). Distamycin A belongs to the family of the pyrroleamidine antibiotics (Baraldi et al., 2000) and is reported to interact reversibly and selectively with DNA-AT sequences interfering with both replication and transcription (Baraldi et al., 2003). Bis-(2-haloethyl)aminophenyl substituted distamycin derivatives can therefore be used in a treatment to ameliorate a cancer (Wang et al., 2003). They may be administered to improve the condition of a patient having a leukaemia lymphoma, sarcoma, such as myeloblastic leukaemia, neuroblastoma, Wilm's tumor or malignant neoplasm of the bladder, breast, lung or thyroid. (Zaffaroni et al., 2002).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The asymmetric unit of the title compound, contains two molecules which are linked via N—H···N hydrogen bonds to form dimers. In the crystals, molecules are linked via N—H···O Intermolecular hydrogen bonds (Table 1), which may be effective in the stabilization of the crystals.

Experimental

The title compound was prepared from 3-Methyl-4-aminobenzoic acid (15.2 g, 100 mmole) in ethanol (40.4 ml, 1000 mmole). After the solid has melted, concentrated hydrochloric acid (142 g, 120 ml) was added dropwise from a dropping funnel at 90°C, the the reaction mixture was cooled with ice and water and finaly the product was filtered by suction. Suitable crystals were obtained by evaporation of a methanol solution for about 3 d.

Refinement

All H atoms were placed geometrically at the distances of 0.93–0.97 Å for C—H and 0.86 Å for N—H and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level. N—H···N hydrogen bonds are shown as dashed lines.

Crystal data

C10H13NO2 Z = 4
Mr = 179.21 F000 = 384
Triclinic, P1 Dx = 1.190 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.0110 (16) Å Cell parameters from 25 reflections
b = 8.7030 (17) Å θ = 10–14º
c = 15.835 (3) Å µ = 0.08 mm1
α = 90.78 (3)º T = 298 (2) K
β = 95.13 (3)º Block, colorless
γ = 114.34 (3)º 0.30 × 0.20 × 0.10 mm
V = 1000.3 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.052
Radiation source: fine-focus sealed tube θmax = 25.2º
Monochromator: graphite θmin = 1.3º
T = 298(2) K h = −9→9
ω/2θ scans k = −10→10
Absorption correction: ψ scan(North et al., 1968) l = 0→18
Tmin = 0.975, Tmax = 0.991 3 standard reflections
3874 measured reflections every 200 reflections
3594 independent reflections intensity decay: none
2146 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075 H-atom parameters constrained
wR(F2) = 0.177   w = 1/[σ2(Fo2) + (0.04P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3594 reflections Δρmax = 0.23 e Å3
235 parameters Δρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.2476 (4) 0.4839 (3) 1.01662 (15) 0.0684 (7)
O2 1.2577 (4) 0.5912 (3) 0.88836 (15) 0.0742 (8)
N1 0.5942 (5) −0.1423 (4) 0.8227 (2) 0.0872 (11)
H1A 0.5484 −0.2192 0.8580 0.105*
H1B 0.5509 −0.1604 0.7701 0.105*
C1 1.4390 (7) 0.6205 (6) 1.1432 (2) 0.0884 (13)
H1C 1.5389 0.7220 1.1674 0.133*
H1D 1.4718 0.5267 1.1505 0.133*
H1E 1.3311 0.6012 1.1712 0.133*
C2 1.3999 (6) 0.6384 (5) 1.0501 (2) 0.0695 (10)
H2A 1.3681 0.7338 1.0420 0.083*
H2B 1.5077 0.6571 1.0211 0.083*
C3 1.1842 (5) 0.4730 (4) 0.9338 (2) 0.0549 (8)
C4 1.0343 (5) 0.3145 (4) 0.9073 (2) 0.0514 (8)
C5 0.9506 (5) 0.1886 (4) 0.9638 (2) 0.0620 (10)
H5A 0.9932 0.2072 1.0212 0.074*
C6 0.8093 (5) 0.0413 (4) 0.9358 (2) 0.0629 (10)
H6A 0.7590 −0.0410 0.9743 0.075*
C7 0.7362 (5) 0.0087 (4) 0.8503 (2) 0.0607 (9)
C8 0.8176 (5) 0.1308 (4) 0.7910 (2) 0.0579 (9)
C9 0.9597 (5) 0.2792 (4) 0.8216 (2) 0.0537 (8)
H9A 1.0103 0.3620 0.7834 0.064*
C10 0.7439 (6) 0.0996 (5) 0.6984 (2) 0.0790 (12)
H10A 0.8184 0.1926 0.6672 0.119*
H10B 0.6192 0.0889 0.6924 0.119*
H10C 0.7471 −0.0026 0.6767 0.119*
O3 0.2589 (4) 0.2954 (3) 0.47872 (15) 0.0695 (7)
O4 0.1772 (4) 0.3743 (3) 0.59841 (17) 0.0836 (9)
N2 0.2153 (5) −0.3189 (4) 0.69728 (19) 0.0828 (11)
H2C 0.1979 −0.3380 0.7496 0.099*
H2D 0.2337 −0.3903 0.6656 0.099*
C11 0.3055 (7) 0.4392 (6) 0.3509 (3) 0.0990 (15)
H11A 0.3072 0.5370 0.3229 0.149*
H11B 0.2152 0.3391 0.3204 0.149*
H11C 0.4248 0.4375 0.3523 0.149*
C12 0.2570 (6) 0.4456 (5) 0.4406 (2) 0.0764 (11)
H12A 0.3465 0.5466 0.4722 0.092*
H12B 0.1360 0.4461 0.4403 0.092*
C13 0.2119 (5) 0.2726 (5) 0.5596 (2) 0.0608 (9)
C14 0.2194 (5) 0.1199 (4) 0.59291 (19) 0.0543 (8)
C15 0.1854 (5) 0.0871 (4) 0.6782 (2) 0.0545 (8)
H15A 0.1632 0.1649 0.7108 0.065*
C16 0.1840 (5) −0.0559 (4) 0.7146 (2) 0.0549 (8)
C17 0.2137 (5) −0.1753 (4) 0.6644 (2) 0.0597 (9)
C18 0.2476 (6) −0.1425 (5) 0.5793 (2) 0.0682 (11)
H18A 0.2686 −0.2200 0.5458 0.082*
C19 0.2499 (5) 0.0029 (5) 0.5451 (2) 0.0660 (10)
H19A 0.2724 0.0221 0.4887 0.079*
C20 0.1455 (6) −0.0876 (5) 0.8067 (2) 0.0768 (12)
H20A 0.1279 0.0055 0.8312 0.115*
H20B 0.2479 −0.0986 0.8379 0.115*
H20C 0.0363 −0.1897 0.8089 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0901 (18) 0.0660 (16) 0.0515 (14) 0.0347 (14) 0.0056 (13) 0.0157 (12)
O2 0.100 (2) 0.0594 (15) 0.0596 (16) 0.0282 (14) 0.0118 (14) 0.0263 (13)
N1 0.099 (3) 0.072 (2) 0.078 (2) 0.021 (2) 0.013 (2) 0.0202 (18)
C1 0.114 (4) 0.099 (3) 0.063 (3) 0.059 (3) −0.010 (2) −0.008 (2)
C2 0.090 (3) 0.060 (2) 0.067 (2) 0.040 (2) 0.000 (2) 0.0075 (19)
C3 0.068 (2) 0.055 (2) 0.051 (2) 0.0334 (18) 0.0094 (17) 0.0118 (16)
C4 0.068 (2) 0.0485 (19) 0.0467 (18) 0.0319 (17) 0.0108 (16) 0.0142 (15)
C5 0.087 (3) 0.060 (2) 0.048 (2) 0.037 (2) 0.0177 (18) 0.0259 (17)
C6 0.078 (3) 0.057 (2) 0.057 (2) 0.030 (2) 0.0191 (19) 0.0255 (18)
C7 0.072 (2) 0.049 (2) 0.067 (2) 0.0285 (18) 0.0145 (19) 0.0180 (17)
C8 0.073 (2) 0.062 (2) 0.049 (2) 0.0373 (19) 0.0100 (17) 0.0149 (17)
C9 0.073 (2) 0.0505 (19) 0.0439 (18) 0.0305 (18) 0.0133 (16) 0.0173 (15)
C10 0.096 (3) 0.076 (3) 0.056 (2) 0.026 (2) 0.006 (2) 0.012 (2)
O3 0.0994 (19) 0.0705 (16) 0.0524 (15) 0.0462 (15) 0.0200 (13) 0.0246 (12)
O4 0.140 (3) 0.0684 (17) 0.0626 (17) 0.0603 (18) 0.0224 (16) 0.0110 (14)
N2 0.148 (3) 0.070 (2) 0.0511 (18) 0.065 (2) 0.0102 (19) 0.0136 (16)
C11 0.135 (4) 0.104 (4) 0.066 (3) 0.053 (3) 0.022 (3) 0.038 (3)
C12 0.102 (3) 0.068 (2) 0.066 (3) 0.041 (2) 0.012 (2) 0.027 (2)
C13 0.077 (2) 0.064 (2) 0.047 (2) 0.034 (2) 0.0102 (17) 0.0113 (17)
C14 0.072 (2) 0.055 (2) 0.0380 (17) 0.0288 (17) 0.0062 (15) 0.0088 (15)
C15 0.079 (2) 0.056 (2) 0.0427 (18) 0.0406 (18) 0.0107 (16) 0.0082 (15)
C16 0.076 (2) 0.061 (2) 0.0390 (17) 0.0380 (18) 0.0113 (16) 0.0099 (15)
C17 0.094 (3) 0.055 (2) 0.0438 (19) 0.045 (2) 0.0064 (17) 0.0099 (15)
C18 0.117 (3) 0.064 (2) 0.0439 (19) 0.057 (2) 0.011 (2) 0.0021 (17)
C19 0.099 (3) 0.069 (2) 0.0382 (18) 0.041 (2) 0.0134 (18) 0.0084 (17)
C20 0.120 (3) 0.095 (3) 0.042 (2) 0.068 (3) 0.022 (2) 0.0199 (19)

Geometric parameters (Å, °)

O1—C3 1.351 (4) O3—C13 1.362 (4)
O1—C2 1.446 (4) O3—C12 1.452 (4)
O2—C3 1.232 (4) O4—C13 1.207 (4)
N1—C7 1.369 (5) N2—C17 1.365 (4)
N1—H1A 0.8600 N2—H2C 0.8600
N1—H1B 0.8600 N2—H2D 0.8600
C1—C2 1.503 (5) C11—C12 1.513 (5)
C1—H1C 0.9600 C11—H11A 0.9600
C1—H1D 0.9600 C11—H11B 0.9600
C1—H1E 0.9600 C11—H11C 0.9600
C2—H2A 0.9700 C12—H12A 0.9700
C2—H2B 0.9700 C12—H12B 0.9700
C3—C4 1.432 (5) C13—C14 1.458 (5)
C4—C5 1.407 (4) C14—C19 1.374 (5)
C4—C9 1.409 (4) C14—C15 1.411 (4)
C5—C6 1.349 (5) C15—C16 1.375 (4)
C5—H5A 0.9300 C15—H15A 0.9300
C6—C7 1.404 (5) C16—C17 1.409 (4)
C6—H6A 0.9300 C16—C20 1.522 (4)
C7—C8 1.414 (5) C17—C18 1.409 (4)
C8—C9 1.367 (5) C18—C19 1.376 (5)
C8—C10 1.509 (5) C18—H18A 0.9300
C9—H9A 0.9300 C19—H19A 0.9300
C10—H10A 0.9600 C20—H20A 0.9600
C10—H10B 0.9600 C20—H20B 0.9600
C10—H10C 0.9600 C20—H20C 0.9600
C3—O1—C2 118.2 (3) C13—O3—C12 116.0 (3)
C7—N1—H1A 120.0 C17—N2—H2C 120.0
C7—N1—H1B 120.0 C17—N2—H2D 120.0
H1A—N1—H1B 120.0 H2C—N2—H2D 120.0
C2—C1—H1C 109.5 C12—C11—H11A 109.5
C2—C1—H1D 109.5 C12—C11—H11B 109.5
H1C—C1—H1D 109.5 H11A—C11—H11B 109.5
C2—C1—H1E 109.5 C12—C11—H11C 109.5
H1C—C1—H1E 109.5 H11A—C11—H11C 109.5
H1D—C1—H1E 109.5 H11B—C11—H11C 109.5
O1—C2—C1 107.6 (3) O3—C12—C11 106.2 (3)
O1—C2—H2A 110.2 O3—C12—H12A 110.5
C1—C2—H2A 110.2 C11—C12—H12A 110.5
O1—C2—H2B 110.2 O3—C12—H12B 110.5
C1—C2—H2B 110.2 C11—C12—H12B 110.5
H2A—C2—H2B 108.5 H12A—C12—H12B 108.7
O2—C3—O1 120.3 (3) O4—C13—O3 121.9 (3)
O2—C3—C4 126.2 (3) O4—C13—C14 125.8 (3)
O1—C3—C4 113.5 (3) O3—C13—C14 112.2 (3)
C5—C4—C9 116.4 (3) C19—C14—C15 118.2 (3)
C5—C4—C3 123.1 (3) C19—C14—C13 123.8 (3)
C9—C4—C3 120.5 (3) C15—C14—C13 118.0 (3)
C6—C5—C4 121.0 (3) C16—C15—C14 122.3 (3)
C6—C5—H5A 119.5 C16—C15—H15A 118.8
C4—C5—H5A 119.5 C14—C15—H15A 118.8
C5—C6—C7 121.8 (3) C15—C16—C17 118.7 (3)
C5—C6—H6A 119.1 C15—C16—C20 120.9 (3)
C7—C6—H6A 119.1 C17—C16—C20 120.4 (3)
N1—C7—C6 121.1 (3) N2—C17—C16 121.3 (3)
N1—C7—C8 119.7 (3) N2—C17—C18 119.7 (3)
C6—C7—C8 119.1 (3) C16—C17—C18 119.0 (3)
C9—C8—C7 117.5 (3) C19—C18—C17 120.8 (3)
C9—C8—C10 121.9 (3) C19—C18—H18A 119.6
C7—C8—C10 120.6 (3) C17—C18—H18A 119.6
C8—C9—C4 124.2 (3) C14—C19—C18 121.0 (3)
C8—C9—H9A 117.9 C14—C19—H19A 119.5
C4—C9—H9A 117.9 C18—C19—H19A 119.5
C8—C10—H10A 109.5 C16—C20—H20A 109.5
C8—C10—H10B 109.5 C16—C20—H20B 109.5
H10A—C10—H10B 109.5 H20A—C20—H20B 109.5
C8—C10—H10C 109.5 C16—C20—H20C 109.5
H10A—C10—H10C 109.5 H20A—C20—H20C 109.5
H10B—C10—H10C 109.5 H20B—C20—H20C 109.5
C3—O1—C2—C1 178.1 (3) C13—O3—C12—C11 −177.7 (3)
C2—O1—C3—O2 1.4 (5) C12—O3—C13—O4 −2.5 (5)
C2—O1—C3—C4 179.7 (3) C12—O3—C13—C14 −179.4 (3)
O2—C3—C4—C5 −176.4 (3) O4—C13—C14—C19 176.4 (4)
O1—C3—C4—C5 5.4 (5) O3—C13—C14—C19 −6.9 (5)
O2—C3—C4—C9 2.0 (5) O4—C13—C14—C15 −0.8 (6)
O1—C3—C4—C9 −176.2 (3) O3—C13—C14—C15 176.0 (3)
C9—C4—C5—C6 1.4 (5) C19—C14—C15—C16 0.8 (5)
C3—C4—C5—C6 179.9 (3) C13—C14—C15—C16 178.1 (3)
C4—C5—C6—C7 −1.9 (6) C14—C15—C16—C17 −1.4 (5)
C5—C6—C7—N1 179.2 (4) C14—C15—C16—C20 −179.6 (3)
C5—C6—C7—C8 2.7 (6) C15—C16—C17—N2 179.5 (4)
N1—C7—C8—C9 −179.6 (3) C20—C16—C17—N2 −2.3 (6)
C6—C7—C8—C9 −3.0 (5) C15—C16—C17—C18 1.3 (5)
N1—C7—C8—C10 2.9 (5) C20—C16—C17—C18 179.5 (4)
C6—C7—C8—C10 179.4 (3) N2—C17—C18—C19 −178.9 (4)
C7—C8—C9—C4 2.8 (5) C16—C17—C18—C19 −0.7 (6)
C10—C8—C9—C4 −179.7 (3) C15—C14—C19—C18 −0.1 (6)
C5—C4—C9—C8 −2.0 (5) C13—C14—C19—C18 −177.2 (4)
C3—C4—C9—C8 179.6 (3) C17—C18—C19—C14 0.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.33 3.023 (5) 138
N1—H1B···N2 0.86 2.61 3.242 (5) 131
N2—H2C···O2i 0.86 2.35 3.160 (4) 157
N2—H2D···O4ii 0.86 2.15 2.967 (4) 158

Symmetry codes: (i) x−1, y−1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2050).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Baraldi, P. G., Beria, I., Cozzi, P., Bianchi, N., Gambari, R. & Romagnoli, R. (2003). Bioorg. Med. Chem.11, 965–975. [DOI] [PubMed]
  3. Baraldi, P. G., Cozzi, P., Geroni, C., Mongelli, N., Romagnoli, R. & Spallu, G. (1999). Bioorg. Med. Chem.7, 251–262. [DOI] [PubMed]
  4. Baraldi, P. G., Preti, D., Fruttarolo, F., Tabrizi, M. A. & Romagnoli, R. (2007). Bioorg. Med. Chem.15, 17–35. [DOI] [PubMed]
  5. Baraldi, P. G., Romagnoli, R., Duatti, A., Bolzati, C., Piffanelli, A., Bianchi, N., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. Lett.10, 1397–1400. [DOI] [PubMed]
  6. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  7. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, Y. Q., Wright, S. C. & Larrick, J. W. (2003). Bioorg. Med. Chem. Lett.13, 459–461. [DOI] [PubMed]
  11. Zaffaroni, N., Luald, S., Villa, R., Bellarosa, D., Cermele, C., Felicetti, P., Rossi, C., Orlandi, L. & Daidone, M. G. (2002). Eur. J. Cancer, 38, 1792–1801. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005989/er2050sup1.cif

e-64-0o785-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005989/er2050Isup2.hkl

e-64-0o785-Isup2.hkl (176.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES