Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):m716. doi: 10.1107/S1600536808010945

Aqua­chlorido(4-methyl­benzoato-κO)(1,10-phenanthroline-κ2 N,N′)copper(II)

Wen-Dong Song a,*, Hao Wang a, Yan-Li Miao a
PMCID: PMC2961304  PMID: 21202243

Abstract

In the title mononuclear complex, [Cu(C8H7O2)Cl(C12H8N2)(H2O)], the CuII atom is coordinated by one carboxylate O atom from a monodentate 4-methyl­benzoate ligand, two N atoms from the 1,10-phenanthroline ligand, one chloride ion and one water mol­ecule in a square-pyramidal geometry. The crystal structure exhibits inter- and intra­molecular C—H⋯Cl, C—H⋯O, O—H⋯Cl and O—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions of phenanthroline and methyl H atoms towards the π-systems of neighboring 4-methyl­benzoate units and the pyridine rings of the phenanthroline system [centroid–centroid distances are 2.706 (2) and 2.992 (1) Å, respectively].

Related literature

For related literature, see: Song et al. (2007).graphic file with name e-64-0m716-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H7O2)Cl(C12H8N2)(H2O)]

  • M r = 432.35

  • Monoclinic, Inline graphic

  • a = 10.9095 (4) Å

  • b = 11.0546 (4) Å

  • c = 15.2059 (6) Å

  • β = 103.578 (2)°

  • V = 1782.58 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 296 (2) K

  • 0.30 × 0.29 × 0.25 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.679, T max = 0.721

  • 17233 measured reflections

  • 4096 independent reflections

  • 3470 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.087

  • S = 1.05

  • 4096 reflections

  • 251 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010945/zl2109sup1.cif

e-64-0m716-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010945/zl2109Isup2.hkl

e-64-0m716-Isup2.hkl (200.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl1i 0.93 2.76 3.654 (2) 162
C1—H1⋯O1 0.93 2.52 2.988 (3) 112
O1W—H2W⋯Cl1i 0.816 (10) 2.259 (10) 3.0709 (17) 174 (3)
O1W—H1W⋯O2 0.812 (10) 1.788 (14) 2.526 (2) 150 (3)
C3—H3⋯Cg1ii 0.93 2.71 3.413 (2) 133
C20—H20BCg2iii 0.93 2.99 3.627 (2) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the C14–C19 and C1–C4,C12,N1 rings, respectively.

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

In the structural investigation of 4-methylbenzoate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [Song et al. (2007)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Cu complex obtained by the reaction of 4-methylbenzoic acid, 1,10-phenanthroline and copper chloride in an alkaline aqueous solution.

As illustrated in Figure 1, the CuII atom exists in a square pyramidal environment, defined by one carboxyl O atom from a monodentate 4-methylbenzate ligand, two N atoms from the 1,10-phenanthroline ligand, one chlorine ion and a water molecule. The crystal structure exhibits inter and intramolecular C—H···Cl, C—H···O, O—H···Cl and O—H···O hydrogen bonding and C—H···π interactions of phenanthroline and methyl H atoms towards the π-systems of neighboring 4-methylbenzate units and of pyridine rings of the phenanthroline system. Centroid to centroid distances are 2.706 (2)Å and 2.992 (1) Å, respectively. (Table 1, Fig. 2, Cg1 = Ring (C14-C19) ; Cg2 = Ring (C1-C4 ,C12, N1)).

Experimental

A mixture of copper chloride (1 mmol), 4-methylbenzoic acid (1 mmol), phen (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A packing view of the title compound. The intermolecluar hydrogen bonds and C—H···π interactions are shown as dashed lines.

Crystal data

[Cu(C8H7O2)Cl(C12H8N2)(H2O)] F000 = 884
Mr = 432.35 Dx = 1.611 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2895 reflections
a = 10.9095 (4) Å θ = 2.4–27.9º
b = 11.0546 (4) Å µ = 1.40 mm1
c = 15.2059 (6) Å T = 296 (2) K
β = 103.578 (2)º Block, blue
V = 1782.58 (12) Å3 0.30 × 0.29 × 0.25 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 4096 independent reflections
Radiation source: fine-focus sealed tube 3470 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.039
T = 296(2) K θmax = 27.5º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −13→14
Tmin = 0.679, Tmax = 0.721 k = −14→14
17233 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087   w = 1/[σ2(Fo2) + (0.0424P)2 + 0.6484P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4096 reflections Δρmax = 0.36 e Å3
251 parameters Δρmin = −0.40 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.64907 (19) 0.5567 (2) 0.17000 (14) 0.0353 (4)
H1 0.7299 0.5880 0.1905 0.042*
C2 0.6213 (2) 0.4448 (2) 0.20277 (15) 0.0417 (5)
H2 0.6826 0.4030 0.2445 0.050*
C3 0.5034 (2) 0.3969 (2) 0.17311 (14) 0.0401 (5)
H3 0.4843 0.3214 0.1934 0.048*
C4 0.41115 (19) 0.46272 (19) 0.11182 (13) 0.0323 (4)
C5 0.2842 (2) 0.4229 (2) 0.07897 (14) 0.0387 (5)
H5 0.2592 0.3489 0.0980 0.046*
C6 0.1996 (2) 0.4917 (2) 0.02029 (15) 0.0396 (5)
H6 0.1174 0.4638 −0.0003 0.047*
C7 0.23384 (19) 0.6059 (2) −0.01065 (14) 0.0349 (4)
C8 0.1518 (2) 0.6819 (2) −0.07119 (17) 0.0470 (6)
H8 0.0687 0.6587 −0.0949 0.056*
C9 0.1943 (2) 0.7895 (2) −0.09500 (19) 0.0541 (7)
H9 0.1399 0.8406 −0.1345 0.065*
C10 0.3190 (2) 0.8236 (2) −0.06052 (16) 0.0440 (5)
H10 0.3463 0.8979 −0.0775 0.053*
C11 0.35799 (17) 0.64676 (18) 0.02085 (12) 0.0287 (4)
C12 0.44711 (17) 0.57430 (17) 0.08258 (12) 0.0276 (4)
C13 0.85765 (19) 0.81625 (19) 0.06922 (14) 0.0343 (4)
C14 0.98797 (18) 0.77868 (18) 0.11736 (13) 0.0305 (4)
C15 1.09054 (19) 0.8525 (2) 0.11423 (15) 0.0375 (5)
H15 1.0786 0.9222 0.0790 0.045*
C16 1.20987 (19) 0.8220 (2) 0.16345 (15) 0.0397 (5)
H16 1.2773 0.8727 0.1614 0.048*
C17 1.23162 (19) 0.7185 (2) 0.21550 (14) 0.0354 (5)
C18 1.12943 (19) 0.6429 (2) 0.21623 (14) 0.0364 (5)
H18 1.1422 0.5713 0.2492 0.044*
C19 1.00983 (19) 0.67339 (19) 0.16855 (14) 0.0336 (4)
H19 0.9426 0.6226 0.1707 0.040*
C20 1.3607 (2) 0.6881 (3) 0.27276 (16) 0.0476 (6)
H20A 1.4229 0.7369 0.2541 0.071*
H20B 1.3784 0.6042 0.2654 0.071*
H20C 1.3629 0.7040 0.3352 0.071*
Cl1 0.55415 (5) 0.92640 (5) 0.16915 (4) 0.03802 (13)
Cu1 0.58608 (2) 0.78128 (2) 0.052071 (16) 0.02995 (9)
N1 0.56500 (14) 0.62052 (15) 0.11079 (10) 0.0290 (3)
N2 0.40076 (16) 0.75369 (16) −0.00414 (12) 0.0327 (4)
O1 0.76822 (13) 0.76408 (14) 0.09531 (10) 0.0352 (3)
O2 0.84387 (16) 0.8934 (2) 0.00865 (14) 0.0697 (6)
O1W 0.60789 (15) 0.87990 (17) −0.05137 (12) 0.0500 (4)
H1W 0.6788 (12) 0.908 (2) −0.041 (2) 0.075*
H2W 0.563 (2) 0.9330 (19) −0.0792 (19) 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0295 (10) 0.0428 (12) 0.0317 (10) −0.0006 (9) 0.0034 (8) 0.0039 (9)
C2 0.0400 (12) 0.0482 (13) 0.0348 (11) 0.0060 (10) 0.0044 (9) 0.0126 (10)
C3 0.0479 (13) 0.0383 (12) 0.0354 (11) −0.0028 (10) 0.0124 (9) 0.0073 (9)
C4 0.0370 (11) 0.0319 (10) 0.0296 (10) −0.0045 (8) 0.0112 (8) −0.0021 (8)
C5 0.0404 (12) 0.0388 (12) 0.0390 (11) −0.0134 (9) 0.0132 (9) −0.0029 (9)
C6 0.0306 (10) 0.0473 (13) 0.0404 (11) −0.0141 (9) 0.0075 (9) −0.0068 (10)
C7 0.0279 (10) 0.0428 (12) 0.0326 (10) −0.0064 (8) 0.0042 (8) −0.0054 (9)
C8 0.0257 (10) 0.0598 (15) 0.0492 (13) −0.0063 (10) −0.0041 (9) 0.0032 (12)
C9 0.0348 (12) 0.0607 (17) 0.0574 (16) 0.0031 (11) −0.0078 (11) 0.0166 (13)
C10 0.0333 (11) 0.0433 (12) 0.0499 (13) −0.0008 (10) −0.0013 (10) 0.0133 (11)
C11 0.0263 (9) 0.0322 (10) 0.0271 (9) −0.0029 (8) 0.0052 (7) −0.0023 (8)
C12 0.0267 (9) 0.0329 (10) 0.0233 (8) −0.0032 (8) 0.0059 (7) −0.0025 (7)
C13 0.0283 (10) 0.0372 (11) 0.0355 (10) −0.0047 (8) 0.0037 (8) 0.0011 (9)
C14 0.0263 (9) 0.0354 (11) 0.0295 (10) −0.0033 (8) 0.0057 (8) −0.0034 (8)
C15 0.0316 (10) 0.0395 (12) 0.0414 (11) −0.0053 (9) 0.0083 (9) 0.0032 (9)
C16 0.0256 (10) 0.0486 (13) 0.0448 (12) −0.0086 (9) 0.0080 (9) −0.0058 (10)
C17 0.0260 (10) 0.0477 (13) 0.0317 (10) 0.0025 (9) 0.0054 (8) −0.0089 (9)
C18 0.0342 (11) 0.0379 (11) 0.0362 (11) 0.0036 (9) 0.0067 (9) 0.0001 (9)
C19 0.0288 (10) 0.0360 (11) 0.0361 (10) −0.0049 (8) 0.0081 (8) −0.0038 (9)
C20 0.0290 (11) 0.0691 (16) 0.0419 (12) 0.0051 (11) 0.0026 (9) −0.0065 (12)
Cl1 0.0337 (3) 0.0380 (3) 0.0397 (3) 0.0030 (2) 0.0033 (2) 0.0001 (2)
Cu1 0.02281 (13) 0.03156 (15) 0.03284 (15) −0.00285 (9) 0.00123 (10) 0.00481 (10)
N1 0.0242 (8) 0.0334 (9) 0.0281 (8) −0.0019 (7) 0.0035 (6) 0.0015 (7)
N2 0.0263 (8) 0.0349 (9) 0.0335 (9) −0.0027 (7) 0.0002 (7) 0.0022 (7)
O1 0.0234 (7) 0.0412 (8) 0.0395 (8) −0.0019 (6) 0.0048 (6) 0.0063 (6)
O2 0.0325 (9) 0.0915 (15) 0.0800 (13) −0.0065 (9) 0.0027 (9) 0.0516 (12)
O1W 0.0322 (8) 0.0648 (11) 0.0498 (10) 0.0020 (8) 0.0033 (7) 0.0280 (9)

Geometric parameters (Å, °)

C1—N1 1.327 (2) C13—O2 1.238 (3)
C1—C2 1.394 (3) C13—O1 1.274 (2)
C1—H1 0.9300 C13—C14 1.497 (3)
C2—C3 1.366 (3) C14—C19 1.389 (3)
C2—H2 0.9300 C14—C15 1.395 (3)
C3—C4 1.403 (3) C15—C16 1.382 (3)
C3—H3 0.9300 C15—H15 0.9300
C4—C12 1.398 (3) C16—C17 1.381 (3)
C4—C5 1.427 (3) C16—H16 0.9300
C5—C6 1.356 (3) C17—C18 1.395 (3)
C5—H5 0.9300 C17—C20 1.509 (3)
C6—C7 1.428 (3) C18—C19 1.377 (3)
C6—H6 0.9300 C18—H18 0.9300
C7—C11 1.401 (3) C19—H19 0.9300
C7—C8 1.403 (3) C20—H20A 0.9600
C8—C9 1.356 (3) C20—H20B 0.9600
C8—H8 0.9300 C20—H20C 0.9600
C9—C10 1.390 (3) Cl1—Cu1 2.4810 (6)
C9—H9 0.9300 Cu1—O1 1.9503 (14)
C10—N2 1.330 (3) Cu1—O1W 1.9736 (16)
C10—H10 0.9300 Cu1—N2 2.0248 (17)
C11—N2 1.357 (3) Cu1—N1 2.0261 (17)
C11—C12 1.428 (3) O1W—H1W 0.812 (10)
C12—N1 1.357 (2) O1W—H2W 0.816 (10)
N1—C1—C2 122.73 (19) C16—C15—C14 120.0 (2)
N1—C1—H1 118.6 C16—C15—H15 120.0
C2—C1—H1 118.6 C14—C15—H15 120.0
C3—C2—C1 119.5 (2) C17—C16—C15 121.7 (2)
C3—C2—H2 120.2 C17—C16—H16 119.1
C1—C2—H2 120.2 C15—C16—H16 119.1
C2—C3—C4 119.4 (2) C16—C17—C18 118.09 (19)
C2—C3—H3 120.3 C16—C17—C20 121.8 (2)
C4—C3—H3 120.3 C18—C17—C20 120.1 (2)
C12—C4—C3 117.22 (18) C19—C18—C17 120.6 (2)
C12—C4—C5 118.85 (19) C19—C18—H18 119.7
C3—C4—C5 123.92 (19) C17—C18—H18 119.7
C6—C5—C4 120.8 (2) C18—C19—C14 121.09 (19)
C6—C5—H5 119.6 C18—C19—H19 119.5
C4—C5—H5 119.6 C14—C19—H19 119.5
C5—C6—C7 121.51 (19) C17—C20—H20A 109.5
C5—C6—H6 119.2 C17—C20—H20B 109.5
C7—C6—H6 119.2 H20A—C20—H20B 109.5
C11—C7—C8 116.6 (2) C17—C20—H20C 109.5
C11—C7—C6 118.62 (19) H20A—C20—H20C 109.5
C8—C7—C6 124.78 (19) H20B—C20—H20C 109.5
C9—C8—C7 119.7 (2) O1—Cu1—O1W 91.07 (6)
C9—C8—H8 120.2 O1—Cu1—N2 164.79 (7)
C7—C8—H8 120.2 O1W—Cu1—N2 92.41 (7)
C8—C9—C10 120.2 (2) O1—Cu1—N1 88.73 (6)
C8—C9—H9 119.9 O1W—Cu1—N1 152.03 (8)
C10—C9—H9 119.9 N2—Cu1—N1 81.29 (7)
N2—C10—C9 122.3 (2) O1—Cu1—Cl1 97.16 (5)
N2—C10—H10 118.9 O1W—Cu1—Cl1 106.16 (6)
C9—C10—H10 118.9 N2—Cu1—Cl1 96.07 (5)
N2—C11—C7 123.57 (18) N1—Cu1—Cl1 101.62 (5)
N2—C11—C12 116.53 (16) C1—N1—C12 117.86 (17)
C7—C11—C12 119.89 (18) C1—N1—Cu1 129.28 (14)
N1—C12—C4 123.21 (18) C12—N1—Cu1 112.85 (12)
N1—C12—C11 116.44 (17) C10—N2—C11 117.66 (18)
C4—C12—C11 120.35 (17) C10—N2—Cu1 129.52 (15)
O2—C13—O1 125.12 (19) C11—N2—Cu1 112.82 (13)
O2—C13—C14 119.36 (18) C13—O1—Cu1 130.15 (14)
O1—C13—C14 115.52 (18) Cu1—O1W—H1W 110 (2)
C19—C14—C15 118.41 (19) Cu1—O1W—H2W 130 (2)
C19—C14—C13 121.65 (18) H1W—O1W—H2W 105.0 (15)
C15—C14—C13 119.90 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···Cl1i 0.93 2.76 3.654 (2) 162
C1—H1···O1 0.93 2.52 2.988 (3) 112
O1W—H2W···Cl1i 0.816 (10) 2.259 (10) 3.0709 (17) 174 (3)
O1W—H1W···O2 0.812 (10) 1.788 (14) 2.526 (2) 150 (3)
C3—H3···Cg1ii 0.93 2.71 3.413 (2) 133
C20—H20B···Cg2iii 0.93 2.99 3.627 (2) 125

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2109).

References

  1. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010945/zl2109sup1.cif

e-64-0m716-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010945/zl2109Isup2.hkl

e-64-0m716-Isup2.hkl (200.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES