Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 2;64(Pt 5):o794. doi: 10.1107/S1600536808008477

2,5,7-Trimethyl-3-phenyl­sulfonyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2961306  PMID: 21202286

Abstract

The title compound, C17H16O3S, was prepared by the oxidation of 2,5,7-trimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring exhibits a dihedral angle of 81.16 (4)° with the plane of the benzofuran fragment. The crystal structure is stabilized by π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.874 (2) Å] and by C—H⋯π inter­actions between a phenyl H atom of the phenyl­sulfonyl substituent and the furan ring of adjacent mol­ecules. In addition, the crystal structure exhibits intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar substituted benzofuran compounds, see: Choi et al. (2007a ,b ).graphic file with name e-64-0o794-scheme1.jpg

Experimental

Crystal data

  • C17H16O3S

  • M r = 300.36

  • Monoclinic, Inline graphic

  • a = 9.2468 (7) Å

  • b = 8.4238 (7) Å

  • c = 18.963 (2) Å

  • β = 91.535 (2)°

  • V = 1476.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 (2) K

  • 0.40 × 0.40 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8704 measured reflections

  • 3212 independent reflections

  • 2544 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.104

  • S = 1.03

  • 3212 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008477/zl2106sup1.cif

e-64-0o794-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008477/zl2106Isup2.hkl

e-64-0o794-Isup2.hkl (157.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.95 2.81 3.747 (3) 169
C16—H16C⋯O3ii 0.98 2.48 3.403 (2) 158
C17—H17A⋯O2 0.98 2.42 3.135 (3) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the O1/C8/C1/C2/C7 furan ring.

supplementary crystallographic information

Comment

This work is related to earlier communications on the synthesis and structure of substituted benzofuran analogues, viz. 2,5-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007b). Herein we report the molecular and crystal structure of the title compound, 2,5,7-trimethyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is almost planar, with a mean deviation of 0.009 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [81.16 (4) °] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by aromatic π—π stacking interactions between the furan and the benzene rings from neighbouring molecules. The Cg1···Cg2ii distance is 3.874 (2)Å (Cg1 and Cg2 are the centroids of the O1/C8/C1/C2/C7 furan ring and the C2—C7 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between a phenyl H atom of the phenylsulfonyl substituent and the furan ring of the benzofuran unit, with a C12—H12···Cgi separation of 2.81 Å (Fig. 2 and Table 1; Cg1 is the centroid of the O1/C8/C1/C2/C7 furan ring, symmetry code as in Fig. 2). Additionally, intra- and intermolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

3-Chloroperoxybenzoic acid (77%, 471 mg, 2.1 mmol) was added in small portions to a stirred solution of 2,5,7-trimethyl-3-phenylsulfanyl-1-benzofuran (268 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 399–400 K; Rf = 0.61 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.41 (s, 6H), 2.80 (s, 3H), 6.92 (s, 1H), 7.47–7.52 (m, 4H), 8.01 (d, J = 7.68 Hz, 2H); EI—MS 300 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.99 Å for methylene H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, Uiso(H) =1.5Ueq(C) for H atoms for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.

Fig. 2.

Fig. 2.

π—π, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x + 1, -y + 2, -z; (ii) -x + 2, -y + 1, -z.]

Crystal data

C17H16O3S F000 = 632
Mr = 300.36 Dx = 1.351 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -p 2yn Cell parameters from 4291 reflections
a = 9.2468 (7) Å θ = 2.5–28.3º
b = 8.4238 (7) Å µ = 0.23 mm1
c = 18.963 (2) Å T = 173 (2) K
β = 91.535 (2)º Block, colorless
V = 1476.6 (2) Å3 0.40 × 0.40 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3212 independent reflections
Radiation source: fine-focus sealed tube 2544 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.041
Detector resolution: 10.0 pixels mm-1 θmax = 27.0º
T = 173(2) K θmin = 2.5º
φ and ω scans h = −11→11
Absorption correction: none k = −7→10
8704 measured reflections l = −24→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.104   w = 1/[σ2(Fo2) + (0.0467P)2 + 0.6422P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3212 reflections Δρmax = 0.30 e Å3
193 parameters Δρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.71396 (5) 0.59940 (5) 0.11202 (2) 0.02746 (13)
O1 1.04792 (13) 0.77976 (15) 0.01610 (7) 0.0331 (3)
O2 0.77401 (15) 0.57958 (16) 0.18201 (6) 0.0386 (3)
O3 0.63915 (14) 0.46890 (14) 0.07823 (7) 0.0346 (3)
C1 0.84920 (18) 0.6601 (2) 0.05599 (9) 0.0270 (4)
C2 0.84265 (18) 0.6499 (2) −0.02041 (9) 0.0260 (4)
C3 0.74772 (19) 0.5861 (2) −0.07118 (9) 0.0290 (4)
H3 0.6625 0.5321 −0.0579 0.035*
C4 0.7809 (2) 0.6035 (2) −0.14184 (9) 0.0330 (4)
C5 0.9071 (2) 0.6844 (2) −0.16049 (10) 0.0346 (4)
H5 0.9266 0.6957 −0.2092 0.042*
C6 1.00483 (19) 0.7488 (2) −0.11156 (10) 0.0328 (4)
C7 0.96763 (19) 0.7270 (2) −0.04190 (9) 0.0291 (4)
C8 0.97377 (19) 0.7376 (2) 0.07465 (9) 0.0304 (4)
C9 0.59363 (18) 0.7624 (2) 0.11293 (9) 0.0263 (4)
C10 0.48964 (19) 0.7768 (2) 0.05910 (9) 0.0318 (4)
H10 0.4830 0.7005 0.0223 0.038*
C11 0.3956 (2) 0.9051 (2) 0.06032 (11) 0.0402 (5)
H11 0.3232 0.9165 0.0242 0.048*
C12 0.4063 (2) 1.0159 (2) 0.11345 (12) 0.0450 (5)
H12 0.3416 1.1035 0.1137 0.054*
C13 0.5111 (2) 1.0004 (2) 0.16670 (11) 0.0428 (5)
H13 0.5180 1.0776 0.2032 0.051*
C14 0.6058 (2) 0.8729 (2) 0.16692 (10) 0.0329 (4)
H14 0.6777 0.8615 0.2033 0.040*
C15 0.6791 (2) 0.5378 (3) −0.19827 (10) 0.0461 (5)
H15A 0.6497 0.4301 −0.1853 0.069*
H15B 0.7282 0.5348 −0.2434 0.069*
H15C 0.5934 0.6058 −0.2027 0.069*
C16 1.1407 (2) 0.8345 (2) −0.13129 (12) 0.0438 (5)
H16A 1.1486 0.9339 −0.1046 0.066*
H16B 1.1370 0.8581 −0.1819 0.066*
H16C 1.2249 0.7675 −0.1202 0.066*
C17 1.0431 (2) 0.7849 (2) 0.14286 (10) 0.0398 (5)
H17A 0.9787 0.7586 0.1814 0.060*
H17B 1.0614 0.8994 0.1427 0.060*
H17C 1.1348 0.7278 0.1495 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0317 (2) 0.0259 (2) 0.0248 (2) 0.00101 (17) 0.00055 (16) 0.00232 (17)
O1 0.0278 (6) 0.0313 (7) 0.0401 (7) −0.0011 (5) 0.0010 (5) −0.0019 (6)
O2 0.0440 (8) 0.0429 (8) 0.0287 (7) 0.0047 (6) −0.0027 (6) 0.0058 (6)
O3 0.0403 (7) 0.0252 (6) 0.0383 (7) −0.0040 (5) 0.0022 (6) −0.0008 (5)
C1 0.0264 (8) 0.0274 (9) 0.0273 (8) 0.0029 (7) −0.0003 (6) −0.0001 (7)
C2 0.0276 (8) 0.0229 (8) 0.0276 (8) 0.0051 (7) 0.0019 (6) 0.0015 (7)
C3 0.0301 (9) 0.0280 (9) 0.0289 (9) 0.0026 (7) 0.0005 (7) 0.0000 (7)
C4 0.0383 (10) 0.0317 (9) 0.0289 (9) 0.0091 (8) −0.0003 (7) 0.0010 (8)
C5 0.0430 (10) 0.0332 (10) 0.0281 (9) 0.0124 (8) 0.0082 (8) 0.0045 (8)
C6 0.0334 (10) 0.0260 (9) 0.0395 (10) 0.0081 (7) 0.0098 (8) 0.0050 (8)
C7 0.0287 (8) 0.0238 (8) 0.0348 (9) 0.0043 (7) 0.0007 (7) −0.0003 (7)
C8 0.0294 (9) 0.0274 (9) 0.0343 (9) 0.0047 (7) −0.0008 (7) −0.0013 (7)
C9 0.0253 (8) 0.0252 (8) 0.0286 (8) −0.0030 (7) 0.0045 (7) 0.0023 (7)
C10 0.0320 (9) 0.0308 (9) 0.0324 (9) −0.0035 (7) 0.0006 (7) 0.0012 (8)
C11 0.0303 (10) 0.0424 (11) 0.0480 (12) 0.0021 (8) 0.0011 (8) 0.0113 (9)
C12 0.0404 (11) 0.0350 (11) 0.0605 (13) 0.0097 (9) 0.0177 (10) 0.0049 (10)
C13 0.0488 (12) 0.0338 (10) 0.0465 (12) 0.0003 (9) 0.0147 (9) −0.0076 (9)
C14 0.0339 (9) 0.0345 (10) 0.0307 (9) −0.0040 (8) 0.0066 (7) −0.0033 (8)
C15 0.0492 (12) 0.0601 (14) 0.0285 (10) 0.0059 (11) −0.0055 (8) −0.0026 (9)
C16 0.0401 (11) 0.0361 (11) 0.0561 (13) 0.0031 (9) 0.0161 (10) 0.0097 (9)
C17 0.0359 (10) 0.0416 (11) 0.0413 (11) 0.0006 (9) −0.0096 (8) −0.0055 (9)

Geometric parameters (Å, °)

S—O2 1.4346 (13) C9—C10 1.389 (2)
S—O3 1.4401 (13) C10—C11 1.388 (3)
S—C1 1.7394 (17) C10—H10 0.9500
S—C9 1.7674 (17) C11—C12 1.375 (3)
O1—C8 1.367 (2) C11—H11 0.9500
O1—C7 1.384 (2) C12—C13 1.387 (3)
C1—C8 1.363 (2) C12—H12 0.9500
C1—C2 1.451 (2) C13—C14 1.386 (3)
C2—C3 1.393 (2) C13—H13 0.9500
C2—C7 1.396 (2) C14—H14 0.9500
C3—C4 1.390 (2) C15—H15A 0.9800
C3—H3 0.9500 C15—H15B 0.9800
C4—C5 1.405 (3) C15—H15C 0.9800
C4—C15 1.511 (3) C16—H16A 0.9800
C5—C6 1.388 (3) C16—H16B 0.9800
C5—H5 0.9500 C16—H16C 0.9800
C6—C7 1.386 (2) C17—H17A 0.9800
C6—C16 1.505 (3) C17—H17B 0.9800
C8—C17 1.483 (2) C17—H17C 0.9800
C9—C14 1.386 (2)
O2—S—O3 119.48 (8) C11—C10—C9 118.54 (17)
O2—S—C1 109.43 (8) C11—C10—H10 120.7
O3—S—C1 107.29 (8) C9—C10—H10 120.7
O2—S—C9 108.03 (8) C12—C11—C10 120.53 (19)
O3—S—C9 107.59 (8) C12—C11—H11 119.7
C1—S—C9 103.94 (8) C10—C11—H11 119.7
C8—O1—C7 106.96 (13) C11—C12—C13 120.35 (19)
C8—C1—C2 107.46 (15) C11—C12—H12 119.8
C8—C1—S 126.78 (14) C13—C12—H12 119.8
C2—C1—S 125.53 (13) C14—C13—C12 120.26 (19)
C3—C2—C7 119.27 (16) C14—C13—H13 119.9
C3—C2—C1 136.18 (16) C12—C13—H13 119.9
C7—C2—C1 104.55 (15) C13—C14—C9 118.66 (18)
C4—C3—C2 118.31 (17) C13—C14—H14 120.7
C4—C3—H3 120.8 C9—C14—H14 120.7
C2—C3—H3 120.8 C4—C15—H15A 109.5
C3—C4—C5 119.98 (17) C4—C15—H15B 109.5
C3—C4—C15 119.65 (18) H15A—C15—H15B 109.5
C5—C4—C15 120.36 (17) C4—C15—H15C 109.5
C6—C5—C4 123.47 (17) H15A—C15—H15C 109.5
C6—C5—H5 118.3 H15B—C15—H15C 109.5
C4—C5—H5 118.3 C6—C16—H16A 109.5
C7—C6—C5 114.32 (17) C6—C16—H16B 109.5
C7—C6—C16 122.04 (18) H16A—C16—H16B 109.5
C5—C6—C16 123.64 (17) C6—C16—H16C 109.5
O1—C7—C6 124.99 (16) H16A—C16—H16C 109.5
O1—C7—C2 110.38 (15) H16B—C16—H16C 109.5
C6—C7—C2 124.63 (17) C8—C17—H17A 109.5
C1—C8—O1 110.64 (15) C8—C17—H17B 109.5
C1—C8—C17 134.26 (17) H17A—C17—H17B 109.5
O1—C8—C17 115.10 (15) C8—C17—H17C 109.5
C14—C9—C10 121.66 (17) H17A—C17—H17C 109.5
C14—C9—S 119.35 (14) H17B—C17—H17C 109.5
C10—C9—S 118.98 (13)
O2—S—C1—C8 −24.52 (19) C3—C2—C7—O1 −179.24 (14)
O3—S—C1—C8 −155.54 (16) C1—C2—C7—O1 0.79 (18)
C9—S—C1—C8 90.68 (17) C3—C2—C7—C6 1.4 (3)
O2—S—C1—C2 161.63 (14) C1—C2—C7—C6 −178.60 (16)
O3—S—C1—C2 30.61 (17) C2—C1—C8—O1 0.6 (2)
C9—S—C1—C2 −83.18 (16) S—C1—C8—O1 −174.20 (12)
C8—C1—C2—C3 179.23 (19) C2—C1—C8—C17 −179.81 (19)
S—C1—C2—C3 −5.9 (3) S—C1—C8—C17 5.4 (3)
C8—C1—C2—C7 −0.81 (19) C7—O1—C8—C1 −0.07 (19)
S—C1—C2—C7 174.03 (13) C7—O1—C8—C17 −179.78 (15)
C7—C2—C3—C4 −0.7 (2) O2—S—C9—C14 20.07 (16)
C1—C2—C3—C4 179.30 (18) O3—S—C9—C14 150.32 (14)
C2—C3—C4—C5 −0.3 (3) C1—S—C9—C14 −96.11 (15)
C2—C3—C4—C15 −179.10 (17) O2—S—C9—C10 −160.35 (13)
C3—C4—C5—C6 0.8 (3) O3—S—C9—C10 −30.10 (15)
C15—C4—C5—C6 179.52 (17) C1—S—C9—C10 83.47 (15)
C4—C5—C6—C7 −0.1 (3) C14—C9—C10—C11 −0.5 (3)
C4—C5—C6—C16 179.55 (17) S—C9—C10—C11 179.95 (13)
C8—O1—C7—C6 178.91 (16) C9—C10—C11—C12 0.5 (3)
C8—O1—C7—C2 −0.48 (18) C10—C11—C12—C13 −0.2 (3)
C5—C6—C7—O1 179.76 (15) C11—C12—C13—C14 −0.1 (3)
C16—C6—C7—O1 0.1 (3) C12—C13—C14—C9 0.2 (3)
C5—C6—C7—C2 −0.9 (3) C10—C9—C14—C13 0.1 (3)
C16—C6—C7—C2 179.37 (16) S—C9—C14—C13 179.70 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···Cg1i 0.95 2.81 3.747 (3) 169
C16—H16C···O3ii 0.98 2.48 3.403 (2) 158
C17—H17A···O2 0.98 2.42 3.135 (3) 129

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2106).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1823–o1824.
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4042.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008477/zl2106sup1.cif

e-64-0o794-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008477/zl2106Isup2.hkl

e-64-0o794-Isup2.hkl (157.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES