Abstract
A bone and cartilage enzyme with both 5'-nucleotide phosphodiesterase I and nucleotide pyrophosphohydrolase (NTPPPH) activity modulates physiologic mineralization and pathologic chondrocalcinosis by generating inorganic pyrophosphate. We hypothesized that, as for alkaline phosphatase, expression of an NTPPPH gene can be shared by cells from bone, cartilage, and liver and by certain leukocytes. Recently, we demonstrated the hepatocyte and murine plasma cell membrane glycoprotein PC-1 to have both 5'-nucleotide phosphodiesterase I and NTPPPH activity. We detected polypeptides cross-reactive with PC-1 in human U20S osteosarcoma cells, articular chondrocytes, homogenized human knee cartilages, human knee synovial fluids, hepatoma cells, and murine plasmacytoma cells. Constitutive low abundance PC-1 mRNA expression was detected in U20S cells and chondrocytes by a nested RNA-PCR assay and by Northern blotting. TGF beta is known to substantially increase NTPPPH activity in primary osteoblast cultures. We demonstrated that TGF beta 1 increased NTPPPH activity and the level of PC-1 mRNA and immunoprecipitable [35S]-methionine-labeled PC-1 polypeptides in U20S cells. The identification of PC-1 as an NTPPPH expressed in cells derived from bone and cartilage may prove useful in furthering the understanding of the role of NTPPPH i n physiologic and pathologic mineralization.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson H. C. Mechanisms of pathologic calcification. Rheum Dis Clin North Am. 1988 Aug;14(2):303–319. [PubMed] [Google Scholar]
- Andrée T., Gutensohn W., Kummer U. Is ecto-5'-nucleotidase essential for stimulation of human lymphocytes? Evidence against a role of the enzyme as mitogenic lectin receptor. Immunobiology. 1987 Sep;175(3):214–225. doi: 10.1016/S0171-2985(87)80030-X. [DOI] [PubMed] [Google Scholar]
- Balazovich K. J., Boxer L. A. Extracellular adenosine nucleotides stimulate protein kinase C activity and human neutrophil activation. J Immunol. 1990 Jan 15;144(2):631–637. [PubMed] [Google Scholar]
- Belli S. I., van Driel I. R., Goding J. W. Identification and characterization of a soluble form of the plasma cell membrane glycoprotein PC-1 (5'-nucleotide phosphodiesterase). Eur J Biochem. 1993 Oct 1;217(1):421–428. doi: 10.1111/j.1432-1033.1993.tb18261.x. [DOI] [PubMed] [Google Scholar]
- Buckley M. F., Loveland K. A., McKinstry W. J., Garson O. M., Goding J. W. Plasma cell membrane glycoprotein PC-1. cDNA cloning of the human molecule, amino acid sequence, and chromosomal location. J Biol Chem. 1990 Oct 15;265(29):17506–17511. [PubMed] [Google Scholar]
- Caswell A. M., Ali S. Y., Russell R. G. Nucleoside triphosphate pyrophosphatase of rabbit matrix vesicles, a mechanism for the generation of inorganic pyrophosphate in epiphyseal cartilage. Biochim Biophys Acta. 1987 May 19;924(2):276–283. doi: 10.1016/0304-4165(87)90023-7. [DOI] [PubMed] [Google Scholar]
- Caswell A. M., Russell R. G. Identification of ecto-nucleoside triphosphate pyrophosphatase in human articular chondrocytes in monolayer culture. Biochim Biophys Acta. 1985 Oct 30;847(1):40–47. doi: 10.1016/0167-4889(85)90150-8. [DOI] [PubMed] [Google Scholar]
- Che M., Nishida T., Gatmaitan Z., Arias I. M. A nucleoside transporter is functionally linked to ectonucleotidases in rat liver canalicular membrane. J Biol Chem. 1992 May 15;267(14):9684–9688. [PubMed] [Google Scholar]
- Chern C. J., MacDonald A. B., Morris A. J. Purification and properties of a nucleoside triphosphate pyrophosphohydrolase from red cells of the rabbit. J Biol Chem. 1969 Oct 25;244(20):5489–5495. [PubMed] [Google Scholar]
- Culp J. S., Blytt H. J., Hermodson M., Butler L. G. Amino acid sequence of the active site peptide of bovine intestinal 5'-nucleotide phosphodiesterase and identification of the active site residue as threonine. J Biol Chem. 1985 Jul 15;260(14):8320–8324. [PubMed] [Google Scholar]
- Derfus B. A., Rachow J. W., Mandel N. S., Boskey A. L., Buday M., Kushnaryov V. M., Ryan L. M. Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Arthritis Rheum. 1992 Feb;35(2):231–240. doi: 10.1002/art.1780350218. [DOI] [PubMed] [Google Scholar]
- Doherty M., Hamilton E., Henderson J., Misra H., Dixey J. Familial chondrocalcinosis due to calcium pyrophosphate dihydrate crystal deposition in English families. Br J Rheumatol. 1991 Feb;30(1):10–15. doi: 10.1093/rheumatology/30.1.10. [DOI] [PubMed] [Google Scholar]
- Dornand J., Bonnafous J. C., Favero J., Mani J. C. Ecto-5'nucleotidase and adenosine deaminase activities of lymphoid cells. Biochem Med. 1982 Oct;28(2):144–156. doi: 10.1016/0006-2944(82)90065-5. [DOI] [PubMed] [Google Scholar]
- Fujiyama S., Tsude K., Sakai M., Sato T. 5'-Nucleotide phosphodiesterase isozyme-V in hepatocellular carcinoma and other liver diseases. Hepatogastroenterology. 1990 Oct;37(5):469–473. [PubMed] [Google Scholar]
- Fukui S., Yoshida H., Yamashina I. Sulfohydrolytic degradation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and adenosine 5'-phosphosulfate (APS) by enzymes of a nucleotide pyrophosphatase nature. J Biochem. 1981 Nov;90(5):1537–1540. doi: 10.1093/oxfordjournals.jbchem.a133621. [DOI] [PubMed] [Google Scholar]
- Funakoshi I., Kato H., Horie K., Yano T., Hori Y., Kobayashi H., Inoue T., Suzuki H., Fukui S., Tsukahara M. Molecular cloning of cDNAs for human fibroblast nucleotide pyrophosphatase. Arch Biochem Biophys. 1992 May 15;295(1):180–187. doi: 10.1016/0003-9861(92)90504-p. [DOI] [PubMed] [Google Scholar]
- Harahap A. R., Goding J. W. Distribution of the murine plasma cell antigen PC-1 in non-lymphoid tissues. J Immunol. 1988 Oct 1;141(7):2317–2320. [PubMed] [Google Scholar]
- Haugen H. F., Skrede S. Nucleotide pyrophosphatase and phosphodiesterase. I. Organ distribution and activities in body fluids. Clin Chem. 1977 Sep;23(9):1531–1537. [PubMed] [Google Scholar]
- Hickman S., Wong-Yip Y. P., Rebbe N. F., Greco J. M. Formation of lipid-linked oligosaccharides by MOPC 315 plasmacytoma cells. Decreased synthesis by a nonsecretory variant. J Biol Chem. 1985 May 25;260(10):6098–6106. [PubMed] [Google Scholar]
- Howell D. S., Martel-Pelletier J., Pelletier J. P., Morales S., Muniz O. NTP pyrophosphohydrolase in human chondrocalcinotic and osteoarthritic cartilage. II. Further studies on histologic and subcellular distribution. Arthritis Rheum. 1984 Feb;27(2):193–199. doi: 10.1002/art.1780270211. [DOI] [PubMed] [Google Scholar]
- Hsu H. H. Purification and partial characterization of ATP pyrophosphohydrolase from fetal bovine epiphyseal cartilage. J Biol Chem. 1983 Mar 25;258(6):3463–3468. [PubMed] [Google Scholar]
- Kanzaki S., Hilliker S., Baylink D. J., Mohan S. Evidence that human bone cells in culture produce insulin-like growth factor-binding protein-4 and -5 proteases. Endocrinology. 1994 Jan;134(1):383–392. doi: 10.1210/endo.134.1.7506211. [DOI] [PubMed] [Google Scholar]
- Lotz M., Terkeltaub R., Villiger P. M. Cartilage and joint inflammation. Regulation of IL-8 expression by human articular chondrocytes. J Immunol. 1992 Jan 15;148(2):466–473. [PubMed] [Google Scholar]
- Lüthje J., Ogilvie A. 5'-Nucleotide phosphodiesterase isoenzymes in human serum: quantitative measurement and some biochemical properties. Clin Chim Acta. 1987 May 15;164(3):275–284. doi: 10.1016/0009-8981(87)90302-0. [DOI] [PubMed] [Google Scholar]
- Lüthje J., Pickert S., Ogilvie A., Hornemann E., Siegfried W., Waldherr A., Domschke W. Levels of 5'-nucleotide phosphodiesterase isoenzymes in normal and pathological sera. Clin Chim Acta. 1988 Oct 14;177(2):131–139. doi: 10.1016/0009-8981(88)90134-9. [DOI] [PubMed] [Google Scholar]
- Nakanishi O., Oyanagi M., Kuwano Y., Tanaka T., Nakayama T., Mitsui H., Nabeshima Y., Ogata K. Molecular cloning and nucleotide sequences of cDNAs specific for rat liver ribosomal proteins S17 and L30. Gene. 1985;35(3):289–296. doi: 10.1016/0378-1119(85)90007-1. [DOI] [PubMed] [Google Scholar]
- Oda Y., Kuo M. D., Huang S. S., Huang J. S. The plasma cell membrane glycoprotein, PC-1, is a threonine-specific protein kinase stimulated by acidic fibroblast growth factor. J Biol Chem. 1991 Sep 5;266(25):16791–16795. [PubMed] [Google Scholar]
- Oyajobi B. O., Caswell A. M., Russell R. G. Transforming growth factor beta increases ecto-nucleoside triphosphate pyrophosphatase activity of human bone-derived cells. J Bone Miner Res. 1994 Jan;9(1):99–109. doi: 10.1002/jbmr.5650090114. [DOI] [PubMed] [Google Scholar]
- Pattrick M., Hamilton E., Hornby J., Doherty M. Synovial fluid pyrophosphate and nucleoside triphosphate pyrophosphatase: comparison between normal and diseased and between inflamed and non-inflamed joints. Ann Rheum Dis. 1991 Apr;50(4):214–218. doi: 10.1136/ard.50.4.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rachow J. W., Ryan L. M., McCarty D. J., Halverson P. C. Synovial fluid inorganic pyrophosphate concentration and nucleotide pyrophosphohydrolase activity in basic calcium phosphate deposition arthropathy and Milwaukee shoulder syndrome. Arthritis Rheum. 1988 Mar;31(3):408–413. doi: 10.1002/art.1780310313. [DOI] [PubMed] [Google Scholar]
- Rambaldi A., Terao M., Bettoni S., Tini M. L., Bassan R., Barbui T., Garattini E. Expression of leukocyte alkaline phosphatase gene in normal and leukemic cells: regulation of the transcript by granulocyte colony-stimulating factor. Blood. 1990 Dec 15;76(12):2565–2571. [PubMed] [Google Scholar]
- Rebbe N. F., Tong B. D., Finley E. M., Hickman S. Identification of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity associated with the mouse plasma cell differentiation antigen PC-1. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5192–5196. doi: 10.1073/pnas.88.12.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rebbe N. F., Tong B. D., Hickman S. Expression of nucleotide pyrophosphatase and alkaline phosphodiesterase I activities of PC-1, the murine plasma cell antigen. Mol Immunol. 1993 Jan;30(1):87–93. doi: 10.1016/0161-5890(93)90429-f. [DOI] [PubMed] [Google Scholar]
- Rosenthal A. K., Cheung H. S., Ryan L. M. Transforming growth factor beta 1 stimulates inorganic pyrophosphate elaboration by porcine cartilage. Arthritis Rheum. 1991 Jul;34(7):904–911. doi: 10.1002/art.1780340717. [DOI] [PubMed] [Google Scholar]
- Ryan L. M., Kurup I. V., Derfus B. A., Kushnaryov V. M. ATP-induced chondrocalcinosis. Arthritis Rheum. 1992 Dec;35(12):1520–1525. doi: 10.1002/art.1780351216. [DOI] [PubMed] [Google Scholar]
- Ryan L. M., Rachow J. W., McCarty D. J. Synovial fluid ATP: a potential substrate for the production of inorganic pyrophosphate. J Rheumatol. 1991 May;18(5):716–720. [PubMed] [Google Scholar]
- Ryan L. M., Wortmann R. L., Karas B., Lynch M. P., McCarty D. J. Pyrophosphohydrolase activity and inorganic pyrophosphate content of cultured human skin fibroblasts. Elevated levels in some patients with calcium pyrophosphate dihydrate deposition disease. J Clin Invest. 1986 May;77(5):1689–1693. doi: 10.1172/JCI112487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan L. M., Wortmann R. L., Karas B., McCarty D. J., Jr Cartilage nucleoside triphosphate (NTP) pyrophosphohydrolase. I. Identification as an ecto-enzyme. Arthritis Rheum. 1984 Apr;27(4):404–409. doi: 10.1002/art.1780270407. [DOI] [PubMed] [Google Scholar]
- Seyedin S. M., Thompson A. Y., Bentz H., Rosen D. M., McPherson J. M., Conti A., Siegel N. R., Galluppi G. R., Piez K. A. Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. J Biol Chem. 1986 May 5;261(13):5693–5695. [PubMed] [Google Scholar]
- Siegel S. A., Hummel C. F., Carty R. P. The role of nucleoside triphosphate pyrophosphohydrolase in in vitro nucleoside triphosphate-dependent matrix vesicle calcification. J Biol Chem. 1983 Jul 25;258(14):8601–8607. [PubMed] [Google Scholar]
- Skinner M. A. Murine plasma cell antigen PC-1 has a region homologous to the active site of bovine intestinal 5'-nucleotide phosphodiesterase I (EC 3.1.4.1). Nucleic Acids Res. 1991 Nov 11;19(21):6049–6049. doi: 10.1093/nar/19.21.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun A. S., Renaud M. Enhancement of 5'-nucleotidase activity of human leukemic cells after fractionation: implications for cancer and aging. Mutat Res. 1989 Sep-Nov;219(5-6):295–302. doi: 10.1016/0921-8734(89)90031-3. [DOI] [PubMed] [Google Scholar]
- Tenenbaum J., Muniz O., Schumacher H. R., Good A. E., Howell D. S. Comparison of phosphohydrolase activities from articular cartilage in calcium pyrophosphate deposition disease and primary osteoarthritis. Arthritis Rheum. 1981 Mar;24(3):492–500. doi: 10.1002/art.1780240307. [DOI] [PubMed] [Google Scholar]
- Terkeltaub R. A., Dyer C. A., Martin J., Curtiss L. K. Apolipoprotein (apo) E inhibits the capacity of monosodium urate crystals to stimulate neutrophils. Characterization of intraarticular apo E and demonstration of apo E binding to urate crystals in vivo. J Clin Invest. 1991 Jan;87(1):20–26. doi: 10.1172/JCI114971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villiger P. M., Terkeltaub R., Lotz M. Monocyte chemoattractant protein-1 (MCP-1) expression in human articular cartilage. Induction by peptide regulatory factors and differential effects of dexamethasone and retinoic acid. J Clin Invest. 1992 Aug;90(2):488–496. doi: 10.1172/JCI115885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins E. L., Stillo J. V., Wuthier R. E. Subcellular fractionation of epiphyseal cartilage: isolation of matrix vesicles and profiles of enzymes, phospholipids, calcium and phosphate. Biochim Biophys Acta. 1980 Aug 13;631(2):289–304. doi: 10.1016/0304-4165(80)90303-7. [DOI] [PubMed] [Google Scholar]
- Wu L. N., Genge B. R., Wuthier R. E. Association between proteoglycans and matrix vesicles in the extracellular matrix of growth plate cartilage. J Biol Chem. 1991 Jan 15;266(2):1187–1194. [PubMed] [Google Scholar]
- Yano T., Horie K., Kanamoto R., Kitagawa H., Funakoshi I., Yamashina I. Immunoaffinity purification and characterization of nucleotide pyrophosphatase from human placenta. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1061–1069. doi: 10.1016/s0006-291x(87)80178-x. [DOI] [PubMed] [Google Scholar]
- van Driel I. R., Goding J. W. Plasma cell membrane glycoprotein PC-1. Primary structure deduced from cDNA clones. J Biol Chem. 1987 Apr 5;262(10):4882–4887. [PubMed] [Google Scholar]
- van Driel I. R., Wilks A. F., Pietersz G. A., Goding J. W. Murine plasma cell membrane antigen PC-1: molecular cloning of cDNA and analysis of expression. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8619–8623. doi: 10.1073/pnas.82.24.8619. [DOI] [PMC free article] [PubMed] [Google Scholar]