Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 4;64(Pt 5):m621. doi: 10.1107/S1600536808008337

trans-Dichloridobis(triphenyl­phosphine)palladium(II)1

Josefina Pons a,*, Jordi García-Antón a, Xavier Solans b, Mercè Font-Bardia b, Josep Ros a
PMCID: PMC2961313  PMID: 21202176

Abstract

The title compound, [PdCl2{P(C6H5)3}2], has a slightly distorted square-planar geometry, with the chloride ligands coordinated in a trans configuration. The Pd atom is located on a centre of inversion.

Related literature

For related literature, see: Ferguson et al. (1982); Kitano et al. (1983); La Monica & Ardizzoia (1997); Montoya et al. (2005); Montoya et al. (2006); Mukherjee (2000); Oilunkaniemi et al. (2003); Stark et al. (1997); Steyl (2006); Trofimenko (1972, 1986).graphic file with name e-64-0m621-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C18H15P)2]

  • M r = 701.84

  • Monoclinic, Inline graphic

  • a = 9.296 (5) Å

  • b = 19.889 (8) Å

  • c = 10.621 (6) Å

  • β = 121.71 (4)°

  • V = 1670.6 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 (2) K

  • 0.2 × 0.17 × 0.16 mm

Data collection

  • Mar Research MAR345 diffractometer with image-plate detector

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.85, T max = 0.87

  • 4898 measured reflections

  • 4898 independent reflections

  • 3143 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.077

  • S = 0.93

  • 4898 reflections

  • 187 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: MARXDS (Kabsch, 1988); cell refinement: AUTOMAR (Kabsch, 1988); data reduction: MARSCALE (Kabsch, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008337/bt2685sup1.cif

e-64-0m621-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008337/bt2685Isup2.hkl

e-64-0m621-Isup2.hkl (235.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pd—Cl 2.3111 (13)
Pd—P 2.3721 (10)
Cl—Pd—P 87.62 (4)
Cli—Pd—P 92.38 (4)
Cl—Pd—P—C1 41.9 (2)
Cl—Pd—P—C13 −75.7 (2)
Cl—Pd—P—C7 163.9 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

Support by the Spanish Ministerio de Educación y Cultura (Project CTQ2007–639137) is gratefully aknowledged.

supplementary crystallographic information

Comment

The coordination chemistry of pyrazole derived ligands has been extensively studied in recent years (Trofimenko, 1972, 1986; La Monica et al., 1997; Mukherjee, 2000). Recently, in our laboratory the synthesis and characterization of a family of 1,3,5-pyrazole derived ligands have been developed (Montoya et al. 2005) and we have studied the reactivity towards divalent metal ions. The reaction of [PdCl2L1] (L1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine with AgBF4 followed by the addition of PPh3 and NaBPh4 yields the compound [Pd(L1)(PPh3)2](BPh4)2 (Montoya et al., 2006). The title compound was obtained when the triphenylphosphine ligand was added before the precipitation of the chloride ions with AgBF4. In this way, PPh3 ligands displace L1 to form trans-[PdCl2(PPh3)2] (1).

Related compounds are trans-[PdCl2(PPh3)2] (2) (Ferguson et al., 1982), trans-[PdCl2(PPh3)2].C6H4Cl2 (Kitano et al.,1983), trans-[PdCl2(PPh3)2].2CHCl3 (Stark et al., 1997), trans-[PdCl2(PPh3)2].CH2Cl2 (Oilunkaniemi et al., 2003), and trans-[PdCl2(PPh3)2].C2H4Cl2 (Steyl, 2006). There are no solvent molecules present in the structure described in this paper. The same behaviour was found for the structure described by Ferguson (2), but differences have been found in the crystal systems and space groups [triclinic P1 (2); monoclinic P21/c, (1)]. Moreover, the Pd—Cl and Pd—P bond distances (2.3111 (13) Å and 2.3721 (10) Å, respectively) in complex (1) are slightly longer than those found in complex (2) (2.290 (1) Å and 2.337 (1) Å, respectively).

Experimental

Treatment of 0.14 mmol (0.060 g) of [PdCl2(L1)] (L1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine) with 0.28 mmol (0.054 g) of PPh3 in 10 ml of dichloromethane and 10 ml of methanol provokes the displacement of the pyrazolic ligand from the coordinative sphere of the metallic cation and the formation of trans-[PdCl2(PPh3)2]. This complex precipitates as a yellow solid and was filtered and dried under vacuum. Single crystals were obtained by recrystallization of the complex in dichloromethane/diethyl ether 1:1. Yield: 0.080 g (81%) - C36H30Cl2P2Pd (701.84). % C, 61.60; H, 4.30; found: C, 61.33; H, 4.42;. IR (KBr, cm-1): ν (C—H)ar 3047; δ (C—H)ar 1437; δ (C—H)oop 693. IR (polyethylene, cm-1): ν 376, 358 (Pd—P), ν (Pd—Cl). 1H NMR (250 MHz, [D1]-chloroform solution) δ = 7.71 (m, 2H, PPh3ortho), 7.44–7.35 (m, 3H, PPh3). 13C{1H} NMR (63 MHz, [D1]-chloroform solution) δ = 135.5, 131.0, 130.0, 128.5 (PPh3). 31P{1H} NMR (81 MHz, [D1]-chloroform solution) δ = -21.1 (s, PPh3).

Refinement

We had serious problems growing up good crystals of reasonable size and quality and, in all cases, we obtained twinned crystals with very broad reflections (bad mosaic structure). Measurement were done in a image plate difractometer which only measure in a single /f angle.

All H atoms were computed and refined, using a riding model, with an isotropic temperature factor equal to 1.2 times the equivalent temperature factor of the atom which are bonded.

Figures

Fig. 1.

Fig. 1.

trans-Dichlorobis(triphenylphosphine)palladium(II)

Crystal data

[PdCl2(C18H15P1)2] F000 = 712
Mr = 701.84 Dx = 1.395 Mg m3
Monoclinic, P21/c Mo Kα radiation radiation λ = 0.71073 Å
a = 9.296 (5) Å Cell parameters from 26 reflections
b = 19.889 (8) Å θ = 3–31º
c = 10.621 (6) Å µ = 0.83 mm1
β = 121.71 (4)º T = 293 (2) K
V = 1670.6 (15) Å3 Prism, yellow
Z = 2 0.2 × 0.17 × 0.16 mm

Data collection

MAR345 with image-plate detector diffractometer 4898 independent reflections
Radiation source: fine-focus sealed tube 3143 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 293(2) K θmax = 33.3º
φ scans θmin = 3.8º
Absorption correction: multi-scan(SADABS; Bruker, 1999) h = −14→12
Tmin = 0.85, Tmax = 0.87 k = 0→30
4898 measured reflections l = 0→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.077   w = 1/[σ2(Fo2) + (0.0269P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max = 0.002
4898 reflections Δρmax = 0.56 e Å3
187 parameters Δρmin = −0.36 e Å3
7 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd 1.0000 0.0000 0.5000 0.04342 (7)
P 0.84764 (7) 0.09596 (3) 0.36120 (6) 0.04430 (13)
Cl 0.97931 (10) 0.04208 (4) 0.69271 (7) 0.06833 (18)
C1 0.6712 (3) 0.11530 (14) 0.3892 (3) 0.0580 (6)
C2 0.6470 (3) 0.17570 (17) 0.4357 (3) 0.0657 (7)
H2 0.7217 0.2106 0.4529 0.079*
C3 0.5150 (5) 0.1869 (2) 0.4584 (4) 0.0889 (10)
H3 0.5026 0.2279 0.4939 0.107*
C4 0.4034 (5) 0.1351 (2) 0.4262 (4) 0.0969 (11)
H4 0.3102 0.1429 0.4346 0.116*
C5 0.4210 (5) 0.0737 (2) 0.3832 (4) 0.0976 (11)
H5 0.3458 0.0394 0.3685 0.117*
C6 0.5576 (4) 0.06221 (17) 0.3603 (4) 0.0811 (8)
H6 0.5711 0.0207 0.3273 0.097*
C7 0.7530 (3) 0.09435 (13) 0.1606 (3) 0.0614 (6)
C8 0.5790 (4) 0.09538 (17) 0.0615 (3) 0.0835 (9)
H8 0.5064 0.0960 0.0970 0.100*
C9 0.5128 (6) 0.0955 (2) −0.0899 (4) 0.1180 (16)
H9 0.3962 0.0965 −0.1547 0.142*
C10 0.6163 (7) 0.0942 (2) −0.1452 (4) 0.1208 (16)
H10 0.5706 0.0937 −0.2469 0.145*
C11 0.7918 (6) 0.0935 (2) −0.0474 (4) 0.0996 (12)
H11 0.8631 0.0930 −0.0842 0.120*
C12 0.8601 (4) 0.09361 (17) 0.1056 (3) 0.0774 (8)
H12 0.9767 0.0932 0.1705 0.093*
C13 0.9779 (3) 0.17318 (11) 0.4177 (2) 0.0491 (5)
C14 1.1113 (3) 0.18023 (15) 0.5592 (3) 0.0659 (7)
H14 1.1381 0.1455 0.6266 0.079*
C15 1.2095 (5) 0.2397 (2) 0.6048 (4) 0.0953 (11)
H15 1.3024 0.2438 0.7007 0.114*
C16 1.1653 (5) 0.2915 (2) 0.5048 (5) 0.0961 (11)
H16 1.2282 0.3310 0.5349 0.115*
C17 1.0406 (5) 0.28661 (18) 0.3722 (5) 0.0945 (11)
H17 1.0167 0.3220 0.3067 0.113*
C18 0.9362 (4) 0.22755 (15) 0.3218 (3) 0.0761 (8)
H18 0.8419 0.2256 0.2262 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd 0.04515 (12) 0.04507 (12) 0.04158 (11) 0.00132 (11) 0.02386 (9) 0.00015 (10)
P 0.0441 (3) 0.0449 (3) 0.0430 (3) 0.0013 (2) 0.0222 (2) 0.0019 (2)
Cl 0.0810 (4) 0.0703 (4) 0.0607 (3) 0.0072 (3) 0.0421 (3) −0.0001 (3)
C1 0.0524 (12) 0.0642 (15) 0.0558 (12) 0.0073 (9) 0.0274 (11) 0.0050 (10)
C2 0.0627 (16) 0.0724 (19) 0.0595 (15) 0.0074 (13) 0.0304 (13) 0.0001 (11)
C3 0.088 (2) 0.104 (3) 0.081 (2) 0.018 (2) 0.0492 (18) −0.0020 (18)
C4 0.081 (2) 0.130 (4) 0.092 (2) 0.020 (2) 0.0533 (19) 0.014 (2)
C5 0.075 (2) 0.108 (3) 0.115 (3) −0.009 (2) 0.054 (2) 0.007 (2)
C6 0.0719 (18) 0.0721 (19) 0.111 (2) 0.0005 (13) 0.0560 (18) 0.0040 (18)
C7 0.0689 (12) 0.0598 (15) 0.0481 (11) 0.0004 (12) 0.0256 (9) 0.0019 (10)
C8 0.0704 (13) 0.094 (2) 0.0730 (14) 0.0068 (17) 0.0284 (13) 0.0058 (16)
C9 0.111 (3) 0.130 (3) 0.0689 (15) −0.001 (3) 0.016 (2) 0.002 (2)
C10 0.148 (4) 0.126 (4) 0.070 (2) −0.017 (3) 0.045 (3) −0.003 (2)
C11 0.129 (3) 0.111 (3) 0.082 (2) −0.022 (3) 0.071 (2) −0.007 (2)
C12 0.0803 (19) 0.091 (2) 0.0613 (15) −0.0088 (17) 0.0374 (14) 0.0021 (14)
C13 0.0493 (11) 0.0486 (12) 0.0566 (10) 0.0000 (9) 0.0328 (9) −0.0006 (9)
C14 0.0632 (15) 0.0688 (16) 0.0605 (11) −0.0008 (12) 0.0290 (10) −0.0002 (11)
C15 0.088 (2) 0.090 (2) 0.100 (2) −0.0232 (18) 0.044 (2) −0.020 (2)
C16 0.103 (3) 0.083 (2) 0.122 (3) −0.024 (2) 0.073 (3) −0.019 (2)
C17 0.117 (3) 0.071 (2) 0.105 (3) −0.008 (2) 0.065 (2) 0.0084 (19)
C18 0.088 (2) 0.0688 (19) 0.0718 (17) −0.0061 (16) 0.0424 (16) 0.0055 (13)

Geometric parameters (Å, °)

Pd—Cl 2.3111 (13) C8—C9 1.387 (5)
Pd—Cli 2.3111 (13) C8—H8 0.9300
Pd—P 2.3721 (10) C9—C10 1.366 (6)
Pd—Pi 2.3721 (10) C9—H9 0.9300
P—C7 1.829 (3) C10—C11 1.400 (6)
P—C13 1.849 (2) C10—H10 0.9300
P—C1 1.855 (3) C11—C12 1.400 (4)
C1—C2 1.361 (4) C11—H11 0.9300
C1—C6 1.408 (4) C12—H12 0.9300
C2—C3 1.387 (4) C13—C14 1.362 (3)
C2—H2 0.9300 C13—C18 1.394 (4)
C3—C4 1.373 (5) C14—C15 1.416 (4)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.342 (5) C15—C16 1.378 (5)
C4—H4 0.9300 C15—H15 0.9300
C5—C6 1.432 (5) C16—C17 1.273 (6)
C5—H5 0.9300 C16—H16 0.9300
C6—H6 0.9300 C17—C18 1.436 (5)
C7—C8 1.391 (4) C17—H17 0.9300
C7—C12 1.394 (4) C18—H18 0.9300
Cl—Pd—Cli 180.0 C9—C8—C7 120.5 (4)
Cl—Pd—P 87.62 (4) C9—C8—H8 119.8
Cli—Pd—P 92.38 (4) C7—C8—H8 119.8
Cl—Pd—Pi 92.38 (4) C10—C9—C8 121.0 (4)
Cli—Pd—Pi 87.62 (4) C10—C9—H9 119.5
P—Pd—Pi 180.0 C8—C9—H9 119.5
C7—P—C13 102.99 (12) C9—C10—C11 119.4 (4)
C7—P—C1 105.43 (13) C9—C10—H10 120.3
C13—P—C1 105.00 (12) C11—C10—H10 120.3
C7—P—Pd 118.32 (9) C10—C11—C12 120.2 (4)
C13—P—Pd 113.03 (8) C10—C11—H11 119.9
C1—P—Pd 110.89 (9) C12—C11—H11 119.9
C2—C1—C6 119.6 (3) C7—C12—C11 119.9 (3)
C2—C1—P 124.7 (2) C7—C12—H12 120.1
C6—C1—P 115.7 (2) C11—C12—H12 120.1
C1—C2—C3 122.3 (3) C14—C13—C18 117.9 (2)
C1—C2—H2 118.8 C14—C13—P 120.31 (19)
C3—C2—H2 118.8 C18—C13—P 121.59 (19)
C4—C3—C2 117.2 (4) C13—C14—C15 120.9 (3)
C4—C3—H3 121.4 C13—C14—H14 119.6
C2—C3—H3 121.4 C15—C14—H14 119.6
C5—C4—C3 123.8 (4) C16—C15—C14 118.9 (3)
C5—C4—H4 118.1 C16—C15—H15 120.6
C3—C4—H4 118.1 C14—C15—H15 120.6
C4—C5—C6 118.7 (4) C17—C16—C15 121.7 (4)
C4—C5—H5 120.6 C17—C16—H16 119.2
C6—C5—H5 120.6 C15—C16—H16 119.2
C1—C6—C5 118.2 (3) C16—C17—C18 121.3 (3)
C1—C6—H6 120.9 C16—C17—H17 119.4
C5—C6—H6 120.9 C18—C17—H17 119.4
C8—C7—C12 119.1 (3) C13—C18—C17 119.2 (3)
C8—C7—P 122.5 (3) C13—C18—H18 120.4
C12—C7—P 118.4 (2) C17—C18—H18 120.4
Cl—Pd—P—C1 41.9 (2) Cl—Pd—P—C7 163.9 (2)
Cl—Pd—P—C13 −75.7 (2)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

1

In memory of Professor Xavier Solans i Huguet, deceased September 3, 2007.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2685).

References

  1. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.
  4. Kabsch, W. (1988). J. Appl. Cryst.21, 916–924.
  5. Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017.
  6. La Monica, G. & Ardizzoia, G. (1997). Prog. Inorg. Chem.46, 151–239.
  7. Montoya, V. J., Pons, J., Branchadell, V. & Ros, J. (2005). Tetrahedron, 61, 12377–12385.
  8. Montoya, V. J., Pons, J., Solans, X., Font-Bardía, M. & Ros, J. (2006). Inorg. Chim. Acta, 359, 25–34.
  9. Mukherjee, R. (2000). Coord. Chem. Rev.203, 151–218.
  10. Oilunkaniemi, R., Laitinen, R. S., Hannu-Kuure, N. S. & Ahlgrén, M. (2003). J. Organomet. Chem.678, 95–101.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC97000007.
  14. Steyl, G. (2006). Acta Cryst. E62, m1324–m1325.
  15. Trofimenko, S. (1972). Chem. Rev.72, 497–509.
  16. Trofimenko, S. (1986). Prog. Inorg. Chem.34, 115–210.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008337/bt2685sup1.cif

e-64-0m621-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008337/bt2685Isup2.hkl

e-64-0m621-Isup2.hkl (235.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES