Abstract
Exposure to hypoxia and subsequent development of pulmonary hypertension is associated with an impairment of the nitric oxide (NO) mediated response to endothelium-dependent vasodilators. Inhaled NO may reach resistive pulmonary vessels through an abluminal route. The aim of this study was to investigate if continuous inhalation of NO would attenuate the development of pulmonary hypertension in rats exposed to chronic hypoxia. In conscious rats previously exposed to 10% O2 for 3 wk, short-term inhalation of NO caused a dose-dependent decrease in pulmonary artery pressure (PAP) from 44 +/- 1 to 32 +/- 1 mmHg at 40 ppm with no changes in systemic arterial pressure, cardiac output, or heart rate. In normoxic rats, acute NO inhalation did not cause changes in PAP. In rats simultaneously exposed to 10% O2 and 10 ppm NO during 2 wk, right ventricular hypertrophy was less severe (P < 0.01), and the degree of muscularization of pulmonary vessels at both alveolar duct and alveolar wall levels was lower (P < 0.01) than in rats exposed to hypoxia alone. Tolerance to the pulmonary vasodilator effect of NO did not develop after prolonged inhalation. Brief discontinuation of NO after 2 wk of hypoxia plus NO caused a rapid increase in PAP. These data demonstrate that prolonged inhalation of low concentrations of NO induces sustained pulmonary vasodilation and reduces pulmonary vascular remodeling in response to chronic hypoxia.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adnot S., Kouyoumdjian C., Defouilloy C., Andrivet P., Sediame S., Herigault R., Fratacci M. D. Hemodynamic and gas exchange responses to infusion of acetylcholine and inhalation of nitric oxide in patients with chronic obstructive lung disease and pulmonary hypertension. Am Rev Respir Dis. 1993 Aug;148(2):310–316. doi: 10.1164/ajrccm/148.2.310. [DOI] [PubMed] [Google Scholar]
- Adnot S., Raffestin B., Eddahibi S., Braquet P., Chabrier P. E. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest. 1991 Jan;87(1):155–162. doi: 10.1172/JCI114965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barer G., Emery C., Stewart A., Bee D., Howard P. Endothelial control of the pulmonary circulation in normal and chronically hypoxic rats. J Physiol. 1993 Apr;463:1–16. doi: 10.1113/jphysiol.1993.sp019581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brashers V. L., Peach M. J., Rose C. E., Jr Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists of endothelium-dependent relaxation. J Clin Invest. 1988 Nov;82(5):1495–1502. doi: 10.1172/JCI113757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiodi H., Mohler J. G. Effects of exposure of blood hemoglobin to nitric oxide. Environ Res. 1985 Aug;37(2):355–363. doi: 10.1016/0013-9351(85)90116-1. [DOI] [PubMed] [Google Scholar]
- Clowes A. W., Reidy M. A., Clowes M. M. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest. 1983 Sep;49(3):327–333. [PubMed] [Google Scholar]
- Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinh-Xuan A. T., Higenbottam T. W., Clelland C. A., Pepke-Zaba J., Cremona G., Butt A. Y., Large S. R., Wells F. C., Wallwork J. Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med. 1991 May 30;324(22):1539–1547. doi: 10.1056/NEJM199105303242203. [DOI] [PubMed] [Google Scholar]
- Eddahibi S., Adnot S., Carville C., Blouquit Y., Raffestin B. L-arginine restores endothelium-dependent relaxation in pulmonary circulation of chronically hypoxic rats. Am J Physiol. 1992 Aug;263(2 Pt 1):L194–L200. doi: 10.1152/ajplung.1992.263.2.L194. [DOI] [PubMed] [Google Scholar]
- Fratacci M. D., Frostell C. G., Chen T. Y., Wain J. C., Jr, Robinson D. R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology. 1991 Dec;75(6):990–999. doi: 10.1097/00000542-199112000-00011. [DOI] [PubMed] [Google Scholar]
- Fried R., Meyrick B., Rabinovitch M., Reid L. Polycythemia and the acute hypoxic response in awake rats following chronic hypoxia. J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1167–1172. doi: 10.1152/jappl.1983.55.4.1167. [DOI] [PubMed] [Google Scholar]
- Fried R., Reid L. M. Early recovery from hypoxic pulmonary hypertension: a structural and functional study. J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):1247–1253. doi: 10.1152/jappl.1984.57.4.1247. [DOI] [PubMed] [Google Scholar]
- Frostell C. G., Blomqvist H., Hedenstierna G., Lundberg J., Zapol W. M. Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology. 1993 Mar;78(3):427–435. doi: 10.1097/00000542-199303000-00005. [DOI] [PubMed] [Google Scholar]
- Frostell C., Fratacci M. D., Wain J. C., Jones R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991 Jun;83(6):2038–2047. doi: 10.1161/01.cir.83.6.2038. [DOI] [PubMed] [Google Scholar]
- Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989 May;83(5):1774–1777. doi: 10.1172/JCI114081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg I. D., Stemerman M. B., Ransil B. J., Fuhro R. L. In vivo aortic muscle cell growth kinetics. Differences between thoracic and abdominal segments after intimal injury in the rabbit. Circ Res. 1980 Aug;47(2):182–189. doi: 10.1161/01.res.47.2.182. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
- Jin H., Yang R. H., Chen Y. F., Jackson R. M., Oparil S. Atrial natriuretic peptide attenuates the development of pulmonary hypertension in rats adapted to chronic hypoxia. J Clin Invest. 1990 Jan;85(1):115–120. doi: 10.1172/JCI114400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsella J. P., Neish S. R., Shaffer E., Abman S. H. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992 Oct 3;340(8823):819–820. doi: 10.1016/0140-6736(92)92687-b. [DOI] [PubMed] [Google Scholar]
- Kourembanas S., McQuillan L. P., Leung G. K., Faller D. V. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest. 1993 Jul;92(1):99–104. doi: 10.1172/JCI116604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S. F., Crawley D. E., Barnes P. J., Evans T. W. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am Rev Respir Dis. 1991 Jan;143(1):32–37. doi: 10.1164/ajrccm/143.1.32. [DOI] [PubMed] [Google Scholar]
- Ludmer P. L., Selwyn A. P., Shook T. L., Wayne R. R., Mudge G. H., Alexander R. W., Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986 Oct 23;315(17):1046–1051. doi: 10.1056/NEJM198610233151702. [DOI] [PubMed] [Google Scholar]
- Oda H., Kusumoto S., Nakajima T. Nitrosyl-hemoglobin formation in the blood of animals exposed to nitric oxide. Arch Environ Health. 1975 Sep;30(9):453–456. doi: 10.1080/00039896.1975.10666749. [DOI] [PubMed] [Google Scholar]
- Oka M., Hasunuma K., Webb S. A., Stelzner T. J., Rodman D. M., McMurtry I. F. EDRF suppresses an unidentified vasoconstrictor mechanism in hypertensive rat lungs. Am J Physiol. 1993 Jun;264(6 Pt 1):L587–L597. doi: 10.1152/ajplung.1993.264.6.L587. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
- Pepke-Zaba J., Higenbottam T. W., Dinh-Xuan A. T., Stone D., Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991 Nov 9;338(8776):1173–1174. doi: 10.1016/0140-6736(91)92033-x. [DOI] [PubMed] [Google Scholar]
- Roberts J. D., Jr, Lang P., Bigatello L. M., Vlahakes G. J., Zapol W. M. Inhaled nitric oxide in congenital heart disease. Circulation. 1993 Feb;87(2):447–453. doi: 10.1161/01.cir.87.2.447. [DOI] [PubMed] [Google Scholar]
- Roberts J. D., Polaner D. M., Lang P., Zapol W. M. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992 Oct 3;340(8823):818–819. doi: 10.1016/0140-6736(92)92686-a. [DOI] [PubMed] [Google Scholar]
- Rossaint R., Falke K. J., López F., Slama K., Pison U., Zapol W. M. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med. 1993 Feb 11;328(6):399–405. doi: 10.1056/NEJM199302113280605. [DOI] [PubMed] [Google Scholar]
- Stanbrook H. S., Morris K. G., McMurtry I. F. Prevention and reversal of hypoxic pulmonary hypertension by calcium antagonists. Am Rev Respir Dis. 1984 Jul;130(1):81–85. doi: 10.1164/arrd.1984.130.1.81. [DOI] [PubMed] [Google Scholar]
- Suggett A. J., Herget J. Effect of alpha-methyldopa on the pulmonary vascular changes induced by chronic hypoxia in rats. Clin Sci Mol Med. 1977 Oct;53(4):397–400. doi: 10.1042/cs0530397. [DOI] [PubMed] [Google Scholar]
- Treasure C. B., Manoukian S. V., Klein J. L., Vita J. A., Nabel E. G., Renwick G. H., Selwyn A. P., Alexander R. W., Ganz P. Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ Res. 1992 Oct;71(4):776–781. doi: 10.1161/01.res.71.4.776. [DOI] [PubMed] [Google Scholar]
- Verbeuren T. J., Jordaens F. H., Zonnekeyn L. L., Van Hove C. E., Coene M. C., Herman A. G. Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 1986 Apr;58(4):552–564. doi: 10.1161/01.res.58.4.552. [DOI] [PubMed] [Google Scholar]
