Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 10;64(Pt 5):m635–m636. doi: 10.1107/S1600536808008970

(Carbonyl-1κC)bis­[2,3(η5)-cyclo­penta­dien­yl][μ3-(S-methyl trithio­carbonato)methylidyne-1:2:3κ4 C,S′′:C:C](triphenyl­phosphine-1κP)(μ3-sulfido-1:2:3κ3 S)dicobalt(II)iron(II) trifluoro­methane­sulfonate

Anthony R Manning a, C John McAdam b, Anthony J Palmer a, Jim Simpson b,*
PMCID: PMC2961332  PMID: 21202187

Abstract

The asymmetric unit of the title compound, [FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3, consists of a triangular irondicobalt cluster cation and a trifluoro­methane­sulfonate anion. In the cation, the FeCo2 triangle is symmetrically capped on one face by an S atom and on the other by a C atom linked to a methyl trithio­carbonate residue that bridges the Fe—C bond. Each Co atom carries a cyclo­penta­dienyl ligand while the Fe atom coordinates to one carbonyl and one triphenyl­phosphine ligand. In the crystal structure, the cation is linked to the anion by a number of weak non-classical C—H⋯O and C—H⋯F hydrogen bonds and weak S⋯O (3.317 Å) and S⋯F (3.198 Å) inter­actions. The structure is further stabilized by additional inter­molecular C—H⋯O, C—H⋯F and O⋯O (2.942 Å) contacts, together with an unusual S⋯π(Cp) inter­action (S⋯centroid distance = 3.385 Å), generating an extended network.

Related literature

For the preparation of the title compound, see: Manning et al. (2003). For reference structural data, see: Allen et al. (1987, 2002). For related sulfur- and carbon-capped triangular FeCo2 structures, see: Manning, O’Dwyer et al, (1995, 1998, 1999); Manning, Palmer et al. (1998). For related literature, see: Ringer et al. (2007).graphic file with name e-64-0m635-scheme1.jpg

Experimental

Crystal data

  • [FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3

  • M r = 910.53

  • Monoclinic, Inline graphic

  • a = 11.0403 (6) Å

  • b = 29.2183 (14) Å

  • c = 10.9040 (5) Å

  • β = 100.664 (3)°

  • V = 3456.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 91 (2) K

  • 0.18 × 0.06 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.717, T max = 0.899

  • 36119 measured reflections

  • 5502 independent reflections

  • 4297 reflections with I > 2σ(I)

  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.067

  • S = 1.03

  • 5502 reflections

  • 443 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008970/hb2713sup1.cif

e-64-0m635-sup1.cif (30.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008970/hb2713Isup2.hkl

e-64-0m635-Isup2.hkl (269.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co2—S1 2.1275 (9)
Co1—S1 2.1564 (9)
Fe1—S1 2.1836 (9)
Fe1—C1 1.891 (3)
Fe1—Co1 2.5035 (6)
Fe1—Co2 2.6149 (6)
Co1—C1 1.867 (3)
Co1—Co2 2.4153 (6)
Co2—C1 1.880 (3)
Co2—S1—Co1 68.64 (3)
Co2—S1—Fe1 74.67 (3)
Co1—S1—Fe1 70.45 (3)
Co1—C1—Co2 80.27 (13)
Co1—C1—Fe1 83.54 (13)
Co2—C1—Fe1 87.81 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2 0.98 2.56 3.477 (4) 156
C3—H3C⋯F3 0.98 2.62 3.297 (4) 127
C11—H11⋯O3 0.95 2.41 3.293 (4) 154
C21—H21⋯O2 0.95 2.64 3.588 (4) 174
C21—H21⋯O3 0.95 2.64 3.235 (4) 121
C13—H13⋯O1i 0.95 2.42 3.288 (4) 152
C14—H14⋯F1i 0.95 2.56 3.248 (4) 129
C35—H35⋯O1ii 0.95 2.53 3.283 (4) 136
C24—H24⋯O2iii 0.95 2.49 3.298 (4) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the New Zealand Foundation for Research Science and Technology for a Postdoctoral Fellowship to CJM, and the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The title compound (I) was first reported and characterized by us (Manning et al., 2003), as part of a study into the reaction of carbon disulfide with the µ3-CS cluster [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-CS)]. The product from this reaction, [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3)], reacted with alkylating agents MeX to give [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3Me)]\ +[X]- salts. The compound with [X]- = I- was characterized crystallographically in the initial report. Since then crystals of the compound (I) where [X]- is trifluoromethanesulfonate have come to hand allowing us to determine the effect of the counter-anion on the unusual structure of the cation.

The asymmetric unit of (I), C32H28OPS4FeCo2+, CO3F3S-, consists of a bicapped iron-dicobalt cluster cation and a trifluoromethanesulfonate anion (Fig. 1). The structure of the cation in (I) is very similar to that of the cation in the previously reported iodide salt [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3Me)][I], Manning et al. (2003). The bond lengths and angles in the cations, (Table 1) are comparable in both structures. They also confirm our suggestion that the bonding within the Fe—S—C(SMe)-S—C metallocycle is delocalized. Bond distances and angles in the anion are also normal (Allen et al., 1987).

In the crystal structure the cation is linked to the anion in the asymmetric unit by a number of weak non-classical C—H···O and C—H···F hydrogen bonds and weak S···O and F···O interactions. A feature of the packing is an intermolecular S···π(Cp) interaction involving the capping S1 atom and the C21···C25 cyclopentadiene ring of an adjacent molecule (Fig. 2), with an S···Cgi distance of 3.385Å and a mean S1···Cg···Cn angle of 89.9° (Cg is the centroid of the C21···C25 cyclopentadiene ring and n = 21···25; symmetry code i = x, 3/2 - y, 1/2 + z). Such interactions between S atoms and benzene rings are common, 1781 examples with S···Cg distances in the range 3.0 ··· 3.7 Å (mean 3.54 Å) and S1···Cg···Cn angles in the range 60···120° (mean 90.0°) in the Cambridge database Ver 5.29 to January 2008 (Allen et al., 2004). They are also important in determining protein folding interactions in biochemistry (Ringer et al., 2007). In contrast however, the database reveals only 194 similar interactions involving five-membered aromatic rings with the same distance and angle limitations (mean S···Cg distance 3.62 Å, S1···Cg···Cn angle 89.9), many of which involve cyclopentadiene rings in transition metal organometallic complexes.

The structure is further stabilized by additional intermolecular C—H···O, C—H···F and O···O contacts which generate an extended network (Table 2). Pairs of cluster cations, interleave with trifluoromethylsulphonate cations to form interlinked columns down the c axis (Fig. 3).

For related sulfur and carbon capped triangular FeCo2 structures see Manning, O'Dwyer et al., (1995, 1998, 1999); Manning, Palmer et al., (1998).

Experimental

The title compound was prepared from the room temperature reaction of methyl trifluoromethanesulfonate with [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3)], Manning et al. (2003), with X-ray quality crystals grown from dichloromethane layered with methanol.

Refinement

The crystals were small and weakly diffracting and little useable data were obtained beyond θ = 24°. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The unusual S···π(Cp) interaction (dotted line) in (I). The red circle represents the centroid of the C21···C25 cyclopentadiene ring.

Fig. 3.

Fig. 3.

Crystal packing of (I) viewed down the c axis.

Crystal data

[FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3 F000 = 1840
Mr = 910.53 Dx = 1.750 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5433 reflections
a = 11.0403 (6) Å θ = 2.3–23.6º
b = 29.2183 (14) Å µ = 1.77 mm1
c = 10.9040 (5) Å T = 91 (2) K
β = 100.664 (3)º Irregular fragment, black
V = 3456.7 (3) Å3 0.18 × 0.06 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5502 independent reflections
Radiation source: fine-focus sealed tube 4297 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.081
T = 91(2) K θmax = 24.2º
ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2006) h = −12→12
Tmin = 0.717, Tmax = 0.899 k = −33→33
36119 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.067   w = 1/[σ2(Fo2) + (0.0227P)2 + 1.9058P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
5502 reflections Δρmax = 0.38 e Å3
443 parameters Δρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.43507 (7) 0.68025 (3) 0.84869 (8) 0.01321 (19)
Fe1 0.38034 (4) 0.614761 (15) 0.75881 (4) 0.01093 (12)
Co1 0.59348 (4) 0.647577 (15) 0.79713 (4) 0.01244 (12)
Co2 0.43989 (4) 0.690431 (15) 0.65645 (4) 0.01123 (11)
C1 0.4900 (3) 0.62912 (11) 0.6502 (3) 0.0119 (7)
S2 0.52197 (7) 0.59798 (3) 0.52361 (8) 0.01445 (19)
C2 0.3965 (3) 0.56308 (11) 0.5050 (3) 0.0126 (7)
S3 0.36348 (8) 0.52579 (3) 0.38030 (8) 0.0195 (2)
C3 0.4831 (3) 0.53630 (12) 0.2912 (3) 0.0219 (8)
H3A 0.4877 0.5692 0.2747 0.033*
H3B 0.4642 0.5197 0.2119 0.033*
H3C 0.5624 0.5258 0.3386 0.033*
S4 0.29960 (7) 0.56474 (3) 0.60791 (8) 0.0158 (2)
C4 0.4330 (3) 0.57269 (12) 0.8704 (3) 0.0169 (8)
O4 0.4722 (2) 0.54557 (8) 0.9446 (2) 0.0268 (6)
C11 0.7657 (3) 0.65135 (13) 0.7521 (3) 0.0218 (9)
H11 0.7822 0.6573 0.6712 0.026*
C12 0.7543 (3) 0.68458 (12) 0.8438 (3) 0.0232 (9)
H12 0.7608 0.7168 0.8350 0.028*
C13 0.7314 (3) 0.66107 (13) 0.9513 (3) 0.0242 (9)
H13 0.7209 0.6748 1.0276 0.029*
C14 0.7270 (3) 0.61407 (13) 0.9253 (3) 0.0249 (9)
H14 0.7124 0.5905 0.9807 0.030*
C15 0.7481 (3) 0.60788 (13) 0.8022 (3) 0.0249 (9)
H15 0.7501 0.5794 0.7606 0.030*
C21 0.4574 (3) 0.71066 (11) 0.4791 (3) 0.0171 (8)
H21 0.4880 0.6920 0.4202 0.021*
C22 0.3330 (3) 0.71431 (11) 0.4931 (3) 0.0166 (8)
H22 0.2653 0.6988 0.4441 0.020*
C23 0.3258 (3) 0.74476 (11) 0.5918 (3) 0.0173 (8)
H23 0.2534 0.7529 0.6224 0.021*
C24 0.4474 (3) 0.76111 (11) 0.6372 (3) 0.0187 (8)
H24 0.4703 0.7827 0.7026 0.022*
C25 0.5283 (3) 0.73976 (11) 0.5685 (3) 0.0192 (8)
H25 0.6149 0.7442 0.5802 0.023*
P1 0.19319 (7) 0.62119 (3) 0.81383 (8) 0.01130 (19)
C31 0.1058 (3) 0.66800 (11) 0.7289 (3) 0.0118 (7)
C32 0.0804 (3) 0.66594 (11) 0.5986 (3) 0.0150 (8)
H32 0.1091 0.6407 0.5572 0.018*
C33 0.0139 (3) 0.70032 (12) 0.5291 (3) 0.0185 (8)
H33 −0.0051 0.6980 0.4408 0.022*
C34 −0.0247 (3) 0.73794 (12) 0.5880 (3) 0.0205 (8)
H34 −0.0711 0.7614 0.5405 0.025*
C35 0.0044 (3) 0.74128 (11) 0.7162 (3) 0.0192 (8)
H35 −0.0199 0.7676 0.7567 0.023*
C36 0.0686 (3) 0.70657 (11) 0.7865 (3) 0.0159 (8)
H36 0.0873 0.7092 0.8749 0.019*
C41 0.1856 (3) 0.63076 (11) 0.9778 (3) 0.0130 (7)
C42 0.0678 (3) 0.63315 (11) 1.0099 (3) 0.0138 (7)
H42 −0.0036 0.6317 0.9463 0.017*
C43 0.0553 (3) 0.63756 (11) 1.1325 (3) 0.0170 (8)
H43 −0.0244 0.6399 1.1531 0.020*
C44 0.1591 (3) 0.63864 (11) 1.2259 (3) 0.0157 (8)
H44 0.1502 0.6407 1.3107 0.019*
C45 0.2758 (3) 0.63666 (11) 1.1963 (3) 0.0153 (8)
H45 0.3467 0.6378 1.2606 0.018*
C46 0.2888 (3) 0.63291 (11) 1.0721 (3) 0.0131 (7)
H46 0.3688 0.6318 1.0518 0.016*
C51 0.0968 (3) 0.56975 (11) 0.7843 (3) 0.0135 (7)
C52 0.0065 (3) 0.56312 (12) 0.6782 (3) 0.0196 (8)
H52 −0.0116 0.5869 0.6183 0.024*
C53 −0.0570 (3) 0.52218 (12) 0.6594 (3) 0.0241 (9)
H53 −0.1173 0.5178 0.5860 0.029*
C54 −0.0332 (3) 0.48759 (12) 0.7471 (4) 0.0254 (9)
H54 −0.0778 0.4597 0.7343 0.030*
C55 0.0555 (3) 0.49360 (12) 0.8532 (3) 0.0239 (9)
H55 0.0713 0.4701 0.9142 0.029*
C56 0.1210 (3) 0.53417 (11) 0.8701 (3) 0.0189 (8)
H56 0.1839 0.5378 0.9417 0.023*
S5 0.71566 (8) 0.65888 (3) 0.32134 (8) 0.0176 (2)
O1 0.7829 (2) 0.68745 (8) 0.2496 (2) 0.0249 (6)
O2 0.59310 (19) 0.64632 (8) 0.2590 (2) 0.0201 (6)
O3 0.7252 (2) 0.67193 (9) 0.4504 (2) 0.0260 (6)
C60 0.7989 (3) 0.60449 (13) 0.3295 (3) 0.0221 (8)
F1 0.78346 (19) 0.58458 (7) 0.21758 (19) 0.0351 (6)
F2 0.92021 (16) 0.61032 (7) 0.36923 (18) 0.0264 (5)
F3 0.76096 (18) 0.57506 (7) 0.4081 (2) 0.0321 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0146 (4) 0.0129 (5) 0.0127 (4) −0.0008 (3) 0.0039 (3) −0.0018 (3)
Fe1 0.0111 (3) 0.0106 (3) 0.0116 (3) −0.0004 (2) 0.00340 (19) 0.0001 (2)
Co1 0.0102 (2) 0.0157 (3) 0.0112 (2) −0.00022 (19) 0.00134 (18) −0.00025 (19)
Co2 0.0121 (2) 0.0103 (2) 0.0113 (2) −0.00045 (19) 0.00221 (18) 0.00090 (19)
C1 0.0094 (17) 0.0112 (18) 0.0156 (18) 0.0009 (13) 0.0038 (14) 0.0007 (14)
S2 0.0156 (4) 0.0144 (5) 0.0144 (4) −0.0022 (4) 0.0057 (4) −0.0032 (3)
C2 0.0123 (17) 0.0109 (18) 0.0148 (18) 0.0048 (14) 0.0035 (14) 0.0019 (14)
S3 0.0193 (5) 0.0198 (5) 0.0198 (5) −0.0038 (4) 0.0044 (4) −0.0074 (4)
C3 0.024 (2) 0.025 (2) 0.017 (2) 0.0017 (16) 0.0063 (16) −0.0051 (16)
S4 0.0140 (4) 0.0157 (5) 0.0188 (5) −0.0029 (4) 0.0055 (4) −0.0033 (4)
C4 0.0149 (19) 0.019 (2) 0.019 (2) 0.0005 (15) 0.0081 (15) −0.0054 (17)
O4 0.0319 (15) 0.0215 (15) 0.0268 (15) 0.0092 (12) 0.0052 (12) 0.0096 (12)
C11 0.0101 (18) 0.043 (3) 0.0125 (19) −0.0021 (16) 0.0019 (14) 0.0019 (17)
C12 0.0089 (18) 0.024 (2) 0.034 (2) −0.0051 (15) −0.0029 (16) 0.0023 (18)
C13 0.0138 (19) 0.044 (3) 0.0131 (19) 0.0004 (17) −0.0028 (15) −0.0050 (17)
C14 0.0151 (19) 0.033 (2) 0.023 (2) 0.0009 (17) −0.0054 (16) 0.0120 (17)
C15 0.0099 (18) 0.033 (2) 0.030 (2) 0.0071 (16) −0.0024 (16) −0.0062 (18)
C21 0.024 (2) 0.0151 (19) 0.0141 (19) 0.0052 (15) 0.0093 (15) 0.0054 (15)
C22 0.0197 (19) 0.0156 (19) 0.0129 (18) 0.0019 (15) −0.0014 (15) 0.0047 (15)
C23 0.0200 (19) 0.0093 (18) 0.023 (2) 0.0055 (15) 0.0046 (15) 0.0030 (15)
C24 0.026 (2) 0.0075 (18) 0.020 (2) 0.0002 (15) −0.0021 (16) 0.0012 (14)
C25 0.0144 (18) 0.018 (2) 0.025 (2) −0.0035 (15) 0.0024 (15) 0.0113 (16)
P1 0.0109 (4) 0.0114 (5) 0.0117 (5) −0.0007 (4) 0.0025 (3) −0.0005 (4)
C31 0.0084 (17) 0.0115 (18) 0.0165 (19) −0.0022 (14) 0.0050 (14) 0.0015 (14)
C32 0.0137 (18) 0.0134 (18) 0.0170 (19) −0.0028 (14) 0.0005 (15) −0.0010 (15)
C33 0.0173 (19) 0.023 (2) 0.0133 (18) −0.0009 (16) −0.0017 (15) 0.0038 (15)
C34 0.0126 (18) 0.024 (2) 0.024 (2) 0.0012 (15) −0.0001 (15) 0.0086 (16)
C35 0.0207 (19) 0.0122 (19) 0.026 (2) 0.0035 (15) 0.0072 (16) −0.0013 (16)
C36 0.0184 (19) 0.0155 (19) 0.0151 (18) −0.0010 (15) 0.0066 (15) −0.0001 (15)
C41 0.0133 (18) 0.0101 (18) 0.0168 (18) −0.0008 (14) 0.0057 (14) 0.0011 (14)
C42 0.0125 (18) 0.0143 (19) 0.0138 (18) −0.0005 (14) 0.0004 (14) −0.0007 (14)
C43 0.0180 (19) 0.0154 (19) 0.021 (2) −0.0017 (15) 0.0115 (16) 0.0017 (15)
C44 0.024 (2) 0.0146 (19) 0.0096 (17) −0.0041 (15) 0.0059 (15) −0.0016 (14)
C45 0.0166 (19) 0.0146 (19) 0.0132 (18) −0.0028 (15) −0.0012 (15) 0.0022 (14)
C46 0.0118 (17) 0.0112 (18) 0.0177 (19) −0.0010 (14) 0.0059 (14) −0.0019 (14)
C51 0.0084 (17) 0.0157 (19) 0.0188 (19) 0.0009 (14) 0.0088 (14) −0.0008 (15)
C52 0.0192 (19) 0.018 (2) 0.021 (2) −0.0019 (16) 0.0028 (15) 0.0031 (16)
C53 0.0167 (19) 0.024 (2) 0.030 (2) −0.0065 (16) −0.0004 (16) −0.0021 (18)
C54 0.022 (2) 0.016 (2) 0.040 (2) −0.0047 (16) 0.0102 (18) −0.0036 (18)
C55 0.025 (2) 0.017 (2) 0.030 (2) 0.0007 (16) 0.0063 (17) 0.0038 (17)
C56 0.0191 (19) 0.017 (2) 0.021 (2) −0.0005 (16) 0.0035 (15) 0.0013 (16)
S5 0.0152 (5) 0.0214 (5) 0.0160 (5) −0.0011 (4) 0.0028 (4) 0.0013 (4)
O1 0.0238 (14) 0.0281 (15) 0.0232 (14) −0.0080 (11) 0.0052 (11) 0.0041 (11)
O2 0.0150 (13) 0.0223 (14) 0.0216 (14) −0.0027 (10) −0.0005 (10) 0.0039 (11)
O3 0.0248 (14) 0.0368 (16) 0.0171 (14) 0.0012 (12) 0.0054 (11) −0.0063 (12)
C60 0.015 (2) 0.034 (2) 0.018 (2) 0.0016 (17) 0.0050 (16) 0.0002 (17)
F1 0.0359 (13) 0.0377 (14) 0.0288 (13) 0.0105 (11) −0.0013 (10) −0.0149 (11)
F2 0.0148 (11) 0.0381 (13) 0.0267 (12) 0.0016 (9) 0.0046 (9) −0.0003 (10)
F3 0.0258 (12) 0.0291 (13) 0.0442 (14) 0.0049 (10) 0.0136 (10) 0.0168 (11)

Geometric parameters (Å, °)

Co2—S1 2.1275 (9) C22—C23 1.410 (5)
Co1—S1 2.1564 (9) C22—H22 0.9500
Fe1—S1 2.1836 (9) C23—C24 1.425 (4)
Fe1—C4 1.751 (4) C23—H23 0.9500
Fe1—C1 1.891 (3) C24—C25 1.413 (5)
Fe1—S4 2.2572 (9) C24—H24 0.9500
Fe1—P1 2.2634 (10) C25—H25 0.9500
Fe1—Co1 2.5035 (6) P1—C31 1.824 (3)
Fe1—Co2 2.6149 (6) P1—C41 1.827 (3)
Co1—C1 1.867 (3) P1—C51 1.835 (3)
Co1—C11 2.052 (3) C31—C36 1.389 (4)
Co1—C15 2.056 (3) C31—C32 1.398 (4)
Co1—C12 2.060 (3) C32—C33 1.384 (4)
Co1—C14 2.079 (3) C32—H32 0.9500
Co1—C13 2.086 (3) C33—C34 1.380 (5)
Co1—Co2 2.4153 (6) C33—H33 0.9500
Co2—C1 1.880 (3) C34—C35 1.379 (5)
Co2—C21 2.065 (3) C34—H34 0.9500
Co2—C22 2.067 (3) C35—C36 1.385 (4)
Co2—C23 2.068 (3) C35—H35 0.9500
Co2—C25 2.073 (3) C36—H36 0.9500
Co2—C24 2.079 (3) C41—C46 1.388 (4)
C1—S2 1.743 (3) C41—C42 1.410 (4)
S2—C2 1.702 (3) C42—C43 1.375 (4)
S2—F3 3.198 (2) C42—H42 0.9500
S2—O3 3.317 (3) C43—C44 1.385 (4)
S2—S5 3.7879 (12) C43—H43 0.9500
S2—C60 4.032 (4) C44—C45 1.387 (4)
C2—S4 1.688 (3) C44—H44 0.9500
C2—S3 1.728 (3) C45—C46 1.392 (4)
S3—C3 1.805 (3) C45—H45 0.9500
C3—H3A 0.9800 C46—H46 0.9500
C3—H3B 0.9800 C51—C56 1.391 (4)
C3—H3C 0.9800 C51—C52 1.394 (4)
C4—O4 1.158 (4) C52—C53 1.382 (5)
C4—O4i 4.040 (5) C52—H52 0.9500
O4—O4i 2.941 (5) C53—C54 1.383 (5)
C11—C15 1.410 (5) C53—H53 0.9500
C11—C12 1.416 (5) C54—C55 1.382 (5)
C11—H11 0.9500 C54—H54 0.9500
C12—C13 1.421 (5) C55—C56 1.383 (5)
C12—H12 0.9500 C55—H55 0.9500
C13—C14 1.401 (5) C56—H56 0.9500
C13—H13 0.9500 S5—O1 1.440 (2)
C14—C15 1.416 (5) S5—O3 1.443 (2)
C14—H14 0.9500 S5—O2 1.445 (2)
C15—H15 0.9500 S5—C60 1.829 (4)
C21—C22 1.414 (4) C60—F1 1.334 (4)
C21—C25 1.415 (5) C60—F3 1.335 (4)
C21—H21 0.9500 C60—F2 1.340 (4)
Co2—S1—Co1 68.64 (3) C13—C12—Co1 70.94 (19)
Co2—S1—Fe1 74.67 (3) C11—C12—H12 126.2
Co1—S1—Fe1 70.45 (3) C13—C12—H12 126.2
C4—Fe1—C1 114.96 (14) Co1—C12—H12 124.9
C4—Fe1—S1 105.94 (11) C14—C13—C12 108.1 (3)
C1—Fe1—S1 86.02 (10) C14—C13—Co1 70.05 (19)
C4—Fe1—S4 95.02 (11) C12—C13—Co1 68.97 (19)
C1—Fe1—S4 84.22 (10) C14—C13—H13 125.9
S1—Fe1—S4 159.02 (4) C12—C13—H13 125.9
C4—Fe1—P1 94.37 (11) Co1—C13—H13 126.6
C1—Fe1—P1 150.38 (10) C13—C14—C15 108.2 (3)
S1—Fe1—P1 89.92 (3) C13—C14—Co1 70.6 (2)
S4—Fe1—P1 89.44 (3) C15—C14—Co1 69.12 (19)
C4—Fe1—Co1 88.38 (11) C13—C14—H14 125.9
C1—Fe1—Co1 47.82 (9) C15—C14—H14 125.9
S1—Fe1—Co1 54.27 (3) Co1—C14—H14 125.9
S4—Fe1—Co1 127.00 (3) C11—C15—C14 108.1 (3)
P1—Fe1—Co1 143.12 (3) C11—C15—Co1 69.8 (2)
C4—Fe1—Co2 144.34 (11) C14—C15—Co1 70.84 (19)
C1—Fe1—Co2 45.92 (9) C11—C15—H15 126.0
S1—Fe1—Co2 51.69 (3) C14—C15—H15 126.0
S4—Fe1—Co2 109.44 (3) Co1—C15—H15 125.0
P1—Fe1—Co2 110.91 (3) C22—C21—C25 107.7 (3)
Co1—Fe1—Co2 56.263 (16) C22—C21—Co2 70.06 (18)
C1—Co1—C11 104.89 (14) C25—C21—Co2 70.28 (19)
C1—Co1—C15 103.48 (14) C22—C21—H21 126.1
C11—Co1—C15 40.14 (14) C25—C21—H21 126.1
C1—Co1—C12 136.54 (15) Co2—C21—H21 125.1
C11—Co1—C12 40.27 (14) C23—C22—C21 108.9 (3)
C15—Co1—C12 67.43 (14) C23—C22—Co2 70.08 (18)
C1—Co1—C14 133.31 (14) C21—C22—Co2 69.91 (18)
C11—Co1—C14 67.24 (14) C23—C22—H22 125.6
C15—Co1—C14 40.04 (14) C21—C22—H22 125.6
C12—Co1—C14 67.03 (14) Co2—C22—H22 126.0
C1—Co1—C13 170.24 (14) C22—C23—C24 107.1 (3)
C11—Co1—C13 67.19 (14) C22—C23—Co2 70.05 (18)
C15—Co1—C13 66.83 (14) C24—C23—Co2 70.33 (18)
C12—Co1—C13 40.08 (14) C22—C23—H23 126.5
C14—Co1—C13 39.32 (14) C24—C23—H23 126.5
C1—Co1—S1 87.40 (10) Co2—C23—H23 124.8
C11—Co1—S1 150.50 (11) C25—C24—C23 108.4 (3)
C15—Co1—S1 162.20 (11) C25—C24—Co2 69.87 (19)
C12—Co1—S1 114.00 (11) C23—C24—Co2 69.47 (18)
C14—Co1—S1 122.79 (11) C25—C24—H24 125.8
C13—Co1—S1 102.27 (10) C23—C24—H24 125.8
C1—Co1—Co2 50.10 (10) Co2—C24—H24 126.4
C11—Co1—Co2 113.13 (10) C24—C25—C21 107.9 (3)
C15—Co1—Co2 142.31 (11) C24—C25—Co2 70.35 (19)
C12—Co1—Co2 110.88 (10) C21—C25—Co2 69.72 (19)
C14—Co1—Co2 176.57 (11) C24—C25—H25 126.0
C13—Co1—Co2 137.37 (11) C21—C25—H25 126.0
S1—Co1—Co2 55.12 (3) Co2—C25—H25 125.5
C1—Co1—Fe1 48.64 (10) C31—P1—C41 105.44 (15)
C11—Co1—Fe1 149.80 (10) C31—P1—C51 106.86 (14)
C15—Co1—Fe1 122.58 (11) C41—P1—C51 99.61 (15)
C12—Co1—Fe1 169.27 (10) C31—P1—Fe1 110.52 (11)
C14—Co1—Fe1 117.35 (10) C41—P1—Fe1 118.79 (11)
C13—Co1—Fe1 136.90 (10) C51—P1—Fe1 114.43 (11)
S1—Co1—Fe1 55.28 (3) C36—C31—C32 118.3 (3)
Co2—Co1—Fe1 64.199 (18) C36—C31—P1 123.5 (2)
C1—Co2—C21 99.18 (14) C32—C31—P1 118.1 (2)
C1—Co2—C22 114.54 (13) C33—C32—C31 120.8 (3)
C21—Co2—C22 40.03 (12) C33—C32—H32 119.6
C1—Co2—C23 152.15 (13) C31—C32—H32 119.6
C21—Co2—C23 67.54 (13) C34—C33—C32 120.1 (3)
C22—Co2—C23 39.88 (13) C34—C33—H33 119.9
C1—Co2—C25 118.61 (14) C32—C33—H33 119.9
C21—Co2—C25 40.00 (13) C35—C34—C33 119.6 (3)
C22—Co2—C25 67.01 (13) C35—C34—H34 120.2
C23—Co2—C25 67.53 (13) C33—C34—H34 120.2
C1—Co2—C24 157.72 (14) C34—C35—C36 120.6 (3)
C21—Co2—C24 66.98 (14) C34—C35—H35 119.7
C22—Co2—C24 66.74 (13) C36—C35—H35 119.7
C23—Co2—C24 40.20 (12) C35—C36—C31 120.5 (3)
C25—Co2—C24 39.79 (13) C35—C36—H36 119.7
C1—Co2—S1 87.93 (10) C31—C36—H36 119.7
C21—Co2—S1 170.52 (10) C46—C41—C42 118.8 (3)
C22—Co2—S1 141.40 (10) C46—C41—P1 123.5 (2)
C23—Co2—S1 108.56 (10) C42—C41—P1 117.5 (2)
C25—Co2—S1 130.76 (10) C43—C42—C41 120.6 (3)
C24—Co2—S1 104.29 (10) C43—C42—H42 119.7
C1—Co2—Co1 49.63 (9) C41—C42—H42 119.7
C21—Co2—Co1 124.51 (9) C42—C43—C44 119.9 (3)
C22—Co2—Co1 160.72 (10) C42—C43—H43 120.0
C23—Co2—Co1 157.87 (9) C44—C43—H43 120.0
C25—Co2—Co1 108.60 (9) C43—C44—C45 120.4 (3)
C24—Co2—Co1 122.85 (9) C43—C44—H44 119.8
S1—Co2—Co1 56.25 (3) C45—C44—H44 119.8
C1—Co2—Fe1 46.27 (10) C44—C45—C46 119.8 (3)
C21—Co2—Fe1 135.74 (10) C44—C45—H45 120.1
C22—Co2—Fe1 120.30 (10) C46—C45—H45 120.1
C23—Co2—Fe1 127.53 (10) C41—C46—C45 120.4 (3)
C25—Co2—Fe1 164.27 (10) C41—C46—H46 119.8
C24—Co2—Fe1 154.27 (10) C45—C46—H46 119.8
S1—Co2—Fe1 53.64 (3) C56—C51—C52 118.2 (3)
Co1—Co2—Fe1 59.538 (17) C56—C51—P1 117.4 (2)
S2—C1—Co1 130.47 (17) C52—C51—P1 124.2 (3)
S2—C1—Co2 129.07 (18) C53—C52—C51 120.6 (3)
Co1—C1—Co2 80.27 (13) C53—C52—H52 119.7
S2—C1—Fe1 128.84 (18) C51—C52—H52 119.7
Co1—C1—Fe1 83.54 (13) C52—C53—C54 120.2 (3)
Co2—C1—Fe1 87.81 (13) C52—C53—H53 119.9
C2—S2—C1 97.32 (15) C54—C53—H53 119.9
C2—S2—F3 122.72 (12) C55—C54—C53 120.1 (3)
C1—S2—F3 136.38 (11) C55—C54—H54 120.0
C2—S2—O3 159.01 (12) C53—C54—H54 120.0
C1—S2—O3 95.49 (11) C54—C55—C56 119.5 (3)
F3—S2—O3 52.94 (6) C54—C55—H55 120.3
C2—S2—S5 138.33 (11) C56—C55—H55 120.3
C1—S2—S5 115.77 (11) C55—C56—C51 121.4 (3)
C2—S2—C60 130.20 (12) C55—C56—H56 119.3
C1—S2—C60 132.48 (12) C51—C56—H56 119.3
S4—C2—S2 120.38 (19) O1—S5—O3 115.12 (15)
S4—C2—S3 118.30 (18) O1—S5—O2 115.05 (14)
S2—C2—S3 121.31 (19) O3—S5—O2 114.79 (14)
C2—S3—C3 104.35 (16) O1—S5—C60 103.03 (16)
S3—C3—H3A 109.5 O3—S5—C60 103.68 (15)
S3—C3—H3B 109.5 O2—S5—C60 102.73 (15)
H3A—C3—H3B 109.5 O1—S5—S2 172.58 (11)
S3—C3—H3C 109.5 O3—S5—S2 60.23 (10)
H3A—C3—H3C 109.5 O2—S5—S2 64.80 (10)
H3B—C3—H3C 109.5 C60—S5—S2 84.03 (12)
C2—S4—Fe1 106.84 (11) S5—O3—S2 97.59 (12)
O4—C4—Fe1 177.4 (3) F1—C60—F3 107.7 (3)
Fe1—C4—O4i 165.73 (15) F1—C60—F2 107.5 (3)
C4—O4—O4i 158.3 (3) F3—C60—F2 106.7 (3)
C15—C11—C12 107.9 (3) F1—C60—S5 110.9 (2)
C15—C11—Co1 70.08 (19) F3—C60—S5 112.1 (2)
C12—C11—Co1 70.18 (19) F2—C60—S5 111.6 (2)
C15—C11—H11 126.0 F1—C60—S2 118.6 (2)
C12—C11—H11 126.0 F2—C60—S2 130.3 (2)
Co1—C11—H11 125.3 S5—C60—S2 69.14 (10)
C11—C12—C13 107.7 (3) C60—F3—S2 119.84 (19)
C11—C12—Co1 69.55 (19)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O2 0.98 2.56 3.477 (4) 156
C3—H3C···F3 0.98 2.62 3.297 (4) 127
C11—H11···O3 0.95 2.41 3.293 (4) 154
C21—H21···O2 0.95 2.64 3.588 (4) 174
C21—H21···O3 0.95 2.64 3.235 (4) 121
C13—H13···O1ii 0.95 2.42 3.288 (4) 152
C14—H14···F1ii 0.95 2.56 3.248 (4) 129
C35—H35···O1iii 0.95 2.53 3.283 (4) 136
C24—H24···O2iv 0.95 2.49 3.298 (4) 143

Symmetry codes: (ii) x, y, z+1; (iii) x−1, −y+3/2, z+1/2; (iv) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2713).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  4. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  8. Manning, A. R., McAdam, C. J., Palmer, A. J., Robinson, B. H. & Simpson, J. (2003). Dalton Trans. pp. 4472–4481.
  9. Manning, A. R., O’Dwyer, L., McArdle, P. A. & Cunningham, D. (1995). J. Organomet. Chem.503, C46–C47.
  10. Manning, A. R., O’Dwyer, L., McArdle, P. A. & Cunningham, D. (1998). J. Organomet. Chem.551, 139–149.
  11. Manning, A. R., O’Dwyer, L., McArdle, P. A. & Cunningham, D. (1999). J. Organomet. Chem.573, 109–120.
  12. Manning, A. R., Palmer, A. J., McAdam, C. J., Robinson, B. H. & Simpson, J. (1998). Chem. Commun. pp. 1577–1578.
  13. Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci.16, 1–8. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008970/hb2713sup1.cif

e-64-0m635-sup1.cif (30.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008970/hb2713Isup2.hkl

e-64-0m635-Isup2.hkl (269.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES