Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):o1090. doi: 10.1107/S1600536808014049

1,2-Bis[(2-hydr­oxy-3-methoxy­benzyl­idene)hydrazono]-1,2-diphenyl­ethane

Xiu-Ying Zhang a,*, Hui Ma a, Jiu-Li Chang a, Xin-Cheng Wu a
PMCID: PMC2961346  PMID: 21202605

Abstract

The title compound, C30H26N4O4, was synthesized by the reaction of benzyl dihydrazone and 2-hydr­oxy-3-methoxy­benzaldehyde in ethanol. In the crystal strucutre, the mol­ecule is centrosymmetric. The structure displays two symmetry-related intra­molecular O—H⋯N hydrogen bonds.

Related literature

For related literature, see: Pankaj et al. (2000); Senjuti et al. (2006); Shubhamoy et al. (2003); Boudalis et al. (2004); Veauthier et al. (2004).graphic file with name e-64-o1090-scheme1.jpg

Experimental

Crystal data

  • C30H26N4O4

  • M r = 506.55

  • Monoclinic, Inline graphic

  • a = 8.3732 (11) Å

  • b = 12.7267 (16) Å

  • c = 12.4229 (16) Å

  • β = 98.188 (2)°

  • V = 1310.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.36 × 0.19 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.969, T max = 0.991

  • 9588 measured reflections

  • 2437 independent reflections

  • 1543 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.117

  • S = 1.01

  • 2437 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL .

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014049/kp2163sup1.cif

e-64-o1090-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014049/kp2163Isup2.hkl

e-64-o1090-Isup2.hkl (119.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.91 2.6350 (18) 146

Acknowledgments

This work was supported by the Education Committee Department of Henan Province (grant No. 2007150027).

supplementary crystallographic information

Comment

The design of multidentate Schiff-base ligands and their metal complexes are of great interest in the last few years (Boudalis et al., 2004; Veauthier et al., 2224; Pal et al., 2000). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate its molecular conformation. The molecule of the compound, (I), (Fig.1) is centrosymmetric with a centre of inversion in the middle of C9—C9 A bond. The two benzene rings (C10→C15 and C10 A→C15 A) are parallel. The dihedral angle between the benzene ring (C10→C15) and the least-squares best plane (C1→C6, C8, N1, O1, O2, r.m.s.= 0.0262 Å) is 74.2°. The bond lengths of C9—C9 A, N2—C9, N2—N1, N1—C8 are 1.474 (3) Å, 1.289 (2) Å, 1.4013 (19) Å, and 1.284 (2) Å, respectively. All the angles and bond lengths are within normal range (Pankaj et al., 2000). The symmetry related intramolecular hydrogen bonds O—H···N are observed (Fig. 1, Table 1).

Experimental

All reagents were of AR grade, available commercially and used without further purification. The mixture of benzyl dihydrazone (0.595 g, 2.5 mmol), 2-hydroxy-3-methoxybenzaldehyde (0.76 g, 5 mmol) was heated and refluxed in ethanol (20 ml for 3 h, and then the resulting solution was cooled to room temperature. After filtration, the filtrate was allowed to stand at room temperature. Upon slow evaporation, yellow block crystals suitable for X-ray diffraction analysis were isolated after three days.

Refinement

The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom labels and the 30% probability displacement ellipsoids for non-H atoms. The symmetry related atoms (A) are generated by symmetry operation: 1 - x, -y, 2 - z.

Crystal data

C30H26N4O4 F000 = 532
Mr = 506.55 Dx = 1.284 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 8.3732 (11) Å Cell parameters from 1614 reflections
b = 12.7267 (16) Å θ = 2.5–22.5º
c = 12.4229 (16) Å µ = 0.09 mm1
β = 98.188 (2)º T = 291 (2) K
V = 1310.3 (3) Å3 Block, yellow
Z = 2 0.36 × 0.19 × 0.11 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2437 independent reflections
Radiation source: fine-focus sealed tube 1543 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
T = 291(2) K θmax = 25.5º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.969, Tmax = 0.991 k = −15→15
9588 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.117   w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1624P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2437 reflections Δρmax = 0.11 e Å3
174 parameters Δρmin = −0.15 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47861 (17) 0.23761 (11) 0.56864 (11) 0.0720 (4)
O2 0.30818 (16) 0.17749 (10) 0.71864 (11) 0.0648 (4)
H2 0.2592 0.1502 0.7640 0.097*
N1 0.24208 (19) 0.03065 (11) 0.85518 (12) 0.0567 (4)
N2 0.15856 (19) −0.02470 (11) 0.92719 (12) 0.0578 (4)
C1 0.4277 (2) 0.11223 (14) 0.69686 (15) 0.0503 (4)
C2 0.5195 (2) 0.14299 (15) 0.61656 (15) 0.0549 (5)
C3 0.6395 (2) 0.07799 (17) 0.59099 (17) 0.0661 (6)
H3 0.6997 0.0977 0.5369 0.079*
C4 0.6719 (2) −0.01642 (16) 0.64473 (18) 0.0708 (6)
H4 0.7542 −0.0592 0.6268 0.085*
C5 0.5847 (2) −0.04748 (15) 0.72363 (17) 0.0632 (5)
H5 0.6082 −0.1108 0.7597 0.076*
C6 0.4592 (2) 0.01623 (13) 0.75048 (14) 0.0497 (4)
C7 0.5529 (3) 0.26528 (19) 0.47601 (16) 0.0854 (7)
H7A 0.6672 0.2722 0.4972 0.128*
H7B 0.5094 0.3308 0.4468 0.128*
H7C 0.5320 0.2114 0.4217 0.128*
C8 0.3612 (2) −0.02192 (14) 0.82838 (15) 0.0551 (5)
H8 0.3851 −0.0871 0.8605 0.066*
C9 0.0459 (2) 0.02843 (13) 0.96279 (14) 0.0499 (4)
C10 0.0056 (2) 0.14018 (13) 0.93434 (15) 0.0494 (5)
C11 −0.0776 (3) 0.16613 (16) 0.83395 (17) 0.0721 (6)
H11 −0.1114 0.1133 0.7842 0.087*
C12 −0.1110 (3) 0.26938 (19) 0.8066 (2) 0.0839 (7)
H12 −0.1656 0.2859 0.7381 0.101*
C13 −0.0644 (3) 0.34772 (17) 0.8795 (2) 0.0753 (6)
H13 −0.0891 0.4174 0.8616 0.090*
C14 0.0186 (3) 0.32303 (16) 0.97909 (19) 0.0697 (6)
H14 0.0514 0.3763 1.0286 0.084*
C15 0.0545 (2) 0.21959 (15) 1.00694 (16) 0.0600 (5)
H15 0.1117 0.2036 1.0747 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0830 (10) 0.0687 (9) 0.0680 (9) −0.0023 (7) 0.0232 (8) 0.0159 (7)
O2 0.0686 (9) 0.0565 (8) 0.0741 (10) 0.0137 (7) 0.0271 (7) 0.0126 (7)
N1 0.0599 (10) 0.0488 (9) 0.0657 (10) 0.0003 (8) 0.0242 (8) 0.0066 (8)
N2 0.0613 (10) 0.0504 (9) 0.0656 (10) −0.0009 (8) 0.0230 (8) 0.0070 (8)
C1 0.0488 (10) 0.0489 (10) 0.0540 (11) −0.0016 (8) 0.0104 (8) −0.0042 (9)
C2 0.0572 (12) 0.0540 (11) 0.0540 (11) −0.0104 (9) 0.0100 (9) −0.0018 (9)
C3 0.0598 (13) 0.0732 (15) 0.0701 (14) −0.0096 (11) 0.0254 (11) −0.0097 (11)
C4 0.0599 (13) 0.0699 (15) 0.0872 (15) 0.0049 (11) 0.0260 (12) −0.0096 (12)
C5 0.0603 (13) 0.0521 (11) 0.0791 (14) 0.0048 (9) 0.0164 (11) −0.0057 (10)
C6 0.0500 (11) 0.0430 (10) 0.0576 (11) −0.0031 (8) 0.0129 (9) −0.0038 (8)
C7 0.115 (2) 0.0852 (16) 0.0582 (13) −0.0224 (14) 0.0215 (13) 0.0074 (11)
C8 0.0617 (12) 0.0413 (10) 0.0632 (12) −0.0007 (9) 0.0122 (10) 0.0006 (8)
C9 0.0516 (11) 0.0463 (10) 0.0527 (11) −0.0035 (8) 0.0108 (9) 0.0014 (8)
C10 0.0461 (10) 0.0485 (10) 0.0561 (11) −0.0019 (8) 0.0158 (9) 0.0023 (9)
C11 0.0846 (16) 0.0638 (14) 0.0646 (14) 0.0045 (11) −0.0004 (12) −0.0023 (11)
C12 0.0991 (19) 0.0722 (15) 0.0766 (15) 0.0168 (13) −0.0001 (13) 0.0155 (13)
C13 0.0737 (15) 0.0544 (13) 0.0999 (18) 0.0071 (11) 0.0203 (14) 0.0188 (13)
C14 0.0718 (14) 0.0490 (12) 0.0898 (16) −0.0081 (10) 0.0162 (12) −0.0057 (11)
C15 0.0643 (13) 0.0524 (12) 0.0626 (12) −0.0043 (10) 0.0063 (10) 0.0004 (10)

Geometric parameters (Å, °)

O1—C2 1.365 (2) C7—H7A 0.9600
O1—C7 1.428 (2) C7—H7B 0.9600
O2—C1 1.357 (2) C7—H7C 0.9600
O2—H2 0.8200 C8—H8 0.9300
N1—C8 1.284 (2) C9—C9i 1.474 (3)
N1—N2 1.4013 (19) C9—C10 1.492 (2)
N2—C9 1.289 (2) C10—C15 1.377 (3)
C1—C6 1.399 (2) C10—C11 1.379 (3)
C1—C2 1.399 (2) C11—C12 1.376 (3)
C2—C3 1.374 (3) C11—H11 0.9300
C3—C4 1.382 (3) C12—C13 1.366 (3)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.362 (3) C13—C14 1.366 (3)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.404 (2) C14—C15 1.383 (3)
C5—H5 0.9300 C14—H14 0.9300
C6—C8 1.439 (2) C15—H15 0.9300
C2—O1—C7 117.26 (16) H7A—C7—H7C 109.5
C1—O2—H2 109.5 H7B—C7—H7C 109.5
C8—N1—N2 112.36 (15) N1—C8—C6 122.49 (17)
C9—N2—N1 114.29 (15) N1—C8—H8 118.8
O2—C1—C6 122.30 (16) C6—C8—H8 118.8
O2—C1—C2 117.81 (16) N2—C9—C9i 115.5 (2)
C6—C1—C2 119.88 (16) N2—C9—C10 124.79 (15)
O1—C2—C3 125.21 (17) C9i—C9—C10 119.7 (2)
O1—C2—C1 115.38 (16) C15—C10—C11 118.76 (17)
C3—C2—C1 119.40 (18) C15—C10—C9 120.53 (17)
C2—C3—C4 120.76 (19) C11—C10—C9 120.69 (17)
C2—C3—H3 119.6 C12—C11—C10 120.7 (2)
C4—C3—H3 119.6 C12—C11—H11 119.6
C5—C4—C3 120.76 (19) C10—C11—H11 119.6
C5—C4—H4 119.6 C13—C12—C11 120.3 (2)
C3—C4—H4 119.6 C13—C12—H12 119.9
C4—C5—C6 119.96 (19) C11—C12—H12 119.9
C4—C5—H5 120.0 C14—C13—C12 119.5 (2)
C6—C5—H5 120.0 C14—C13—H13 120.2
C1—C6—C5 119.22 (16) C12—C13—H13 120.2
C1—C6—C8 121.85 (16) C13—C14—C15 120.6 (2)
C5—C6—C8 118.84 (17) C13—C14—H14 119.7
O1—C7—H7A 109.5 C15—C14—H14 119.7
O1—C7—H7B 109.5 C10—C15—C14 120.05 (19)
H7A—C7—H7B 109.5 C10—C15—H15 120.0
O1—C7—H7C 109.5 C14—C15—H15 120.0
C8—N1—N2—C9 174.82 (16) N2—N1—C8—C6 176.37 (15)
C7—O1—C2—C3 8.0 (3) C1—C6—C8—N1 −1.7 (3)
C7—O1—C2—C1 −171.27 (17) C5—C6—C8—N1 −178.34 (17)
O2—C1—C2—O1 0.5 (2) N1—N2—C9—C9i 178.95 (17)
C6—C1—C2—O1 179.61 (16) N1—N2—C9—C10 −1.4 (3)
O2—C1—C2—C3 −178.83 (16) N2—C9—C10—C15 −102.7 (2)
C6—C1—C2—C3 0.3 (3) C9i—C9—C10—C15 76.9 (3)
O1—C2—C3—C4 179.79 (18) N2—C9—C10—C11 75.6 (3)
C1—C2—C3—C4 −0.9 (3) C9i—C9—C10—C11 −104.8 (2)
C2—C3—C4—C5 0.5 (3) C15—C10—C11—C12 0.1 (3)
C3—C4—C5—C6 0.6 (3) C9—C10—C11—C12 −178.26 (19)
O2—C1—C6—C5 179.88 (17) C10—C11—C12—C13 −1.1 (4)
C2—C1—C6—C5 0.8 (3) C11—C12—C13—C14 1.4 (4)
O2—C1—C6—C8 3.3 (3) C12—C13—C14—C15 −0.6 (3)
C2—C1—C6—C8 −175.80 (16) C11—C10—C15—C14 0.7 (3)
C4—C5—C6—C1 −1.3 (3) C9—C10—C15—C14 179.01 (17)
C4—C5—C6—C8 175.46 (18) C13—C14—C15—C10 −0.4 (3)

Symmetry codes: (i) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N1 0.82 1.91 2.6350 (18) 146

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2163).

References

  1. Boudalis A. K., Clement-Juan, J.-M., Dahan, F. & Tuchagues, J.-P. (2004). Inorg. Chem 43, 1574–1586. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Pankaj, K. P., Shubhamoy, C., Michael, G. B. D. & Dipankar, D. (2000). New J. Chem.24, 931–933.
  4. Senjuti, D., Shubhamoy, C., Derek, A. T. & Dipankar, D. (2006). CrystEngComm, 8, 670–673.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shubhamoy, C., Peter, B. I., Michael, G. B. D., Derek, A. T. & Dipankar, D. (2003). New J. Chem.27, 193–196.
  8. Veauthier, J. M., Cho, W.-S., Lynch, V. M. & Sessler, J. L. (2004). Inorg. Chem 43, 1220–1228. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014049/kp2163sup1.cif

e-64-o1090-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014049/kp2163Isup2.hkl

e-64-o1090-Isup2.hkl (119.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES