Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 14;64(Pt 6):o1078–o1079. doi: 10.1107/S1600536808013652

(−)-N,N′-Bis[(1S,2R,5S)-6,6-dimethyl-bicyclo­[3.1.1]heptan-2-ylmeth­yl]pyridine-2,6-dicarboxamide monohydrate

Sylvain Bernès a,*, Francisco Javier Pérez-Flores b, René Gutiérrez b
PMCID: PMC2961349  PMID: 21202595

Abstract

The title compound, C27H39N3O2·H2O, is a chiral pyridine-2,6-dicarboxamide derivative including cis-myrtanyl groups as amine substituents. The pyridine-2,6-dicarboxamide core approximates C 2 point symmetry and a solvent water mol­ecule lies on the pseudo-twofold axis. The water mol­ecule serves both as acceptor and donor for efficient hydrogen bonds involving N—H and C=O functional groups as donor and acceptor groups, respectively. As a result, each water mol­ecule in the crystal structure is tetra­hedrally bonded to three symmetry-related mol­ecules, forming a three-dimensional supra­molecular network. Such an arrangement is a common feature found in the majority of X-ray-characterized sym­metrically substituted pyridine-2,6-dicarboxamide derivatives.

Related literature

For background to the solvent–free synthesis used for the preparation of the title compound, see: Tanaka & Toda (2000); Vázquez et al. (2004); Tovar et al. (2007); Pérez-Flores & Gutiérrez (2008). For hydrates of pyridine-2,6-dicarboxamide derivatives, see: Yu et al. (1999); Qi et al. (2002); Jain et al. (2004); Odriozola et al. (2004).graphic file with name e-64-o1078-scheme1.jpg

Experimental

Crystal data

  • C27H39N3O2·H2O

  • M r = 455.63

  • Monoclinic, Inline graphic

  • a = 6.8476 (11) Å

  • b = 12.1101 (14) Å

  • c = 16.012 (2) Å

  • β = 91.173 (15)°

  • V = 1327.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (1) K

  • 0.6 × 0.6 × 0.2 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: none

  • 6391 measured reflections

  • 3180 independent reflections

  • 2580 reflections with I > 2σ(I)

  • R int = 0.035

  • 3 standard reflections every 97 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.107

  • S = 1.04

  • 3180 reflections

  • 319 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and POV-RAY (Cason, 2004); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013652/rk2088sup1.cif

e-64-o1078-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013652/rk2088Isup2.hkl

e-64-o1078-Isup2.hkl (156KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.82 (2) 2.16 (2) 2.941 (3) 160 (2)
N3—H3⋯O3 0.86 (3) 2.19 (3) 3.017 (3) 159 (2)
O3—H31⋯O2i 0.87 (5) 1.90 (5) 2.756 (3) 167 (4)
O3—H32⋯O1ii 0.90 (4) 1.86 (5) 2.754 (3) 171 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Partial support from VIEP–UAP (14/G/NAT/05) is acknowledged.

supplementary crystallographic information

Comment

Nowadays, reactions conducted in the absence of solvents under mild reaction conditions are becoming an important method in laboratories worldwide as an environment–friendly technique for the efficient syntheses of organic molecules. The main advantages of solvent-free organic synthesis are shorter reaction times, minimum waste and generally higher yields, operational simplicity as well as reduction of thermal degradative byproducts along with cleaner work–up (Tanaka & Toda, 2000). As part of an ongoing program aiming to develop simpler and eco–friendly methods for organic transformations under solvent–free conditions (Tovar et al., 2007; Vázquez et al., 2004), we engaged the preparation of chiral pincer ligands (Pérez-Flores & Gutiérrez, 2008). The title compound resulted from this research, by introducing chiral cis–myrtanyl groups as amine substituents.

The X–ray characterized monohydrate has the expected molecular geometry (Fig. 1). The pyridine–2,6–dicarboxamide core approximates a C2 point symmetry, with the pseudo 2–fold axis passing through N1 and C24. The guest water molecule O3 is placed on the pseudo 2–fold axis and is involved in two N—H···O hydrogen bonds within the asymmetric unit (Fig. 1 and Table 1, lines 1 and 2). The same water molecule is a donor group for two C═O···H intermolecular hydrogen bonds of relatively strong strength (Table 1, lines 3 and 4). As a consequence, a three–dimensional supramolecular structure is formed in the crystal structure, with water molecules being bonded in a tetrahedral arrangement (Fig. 2) to three symmetry–related molecules. Such a feature seems to be common for symmetrically substituted pyridine–2,6–dicarboxamide derivatives. These compounds are generally crystallized as hydrates, and, at least for X–ray characterized compounds, water molecules form hydrogen bonds similar to those observed in the title molecule (e.g. Yu et al., 1999; Qi et al., 2002; Jain et al., 2004; Odriozola et al., 2004).

Experimental

Under solvent–free conditions, (-)-cis–myrtanylamine (0.38 g, 2.5 mmol) and 2,6–pyridinedicarbonyl dichloride (0.30 g, 1.5 mmol) were mixed at room temperature, giving a white solid. The crude was recrystallized from EtOH affording the corresponding dicarboxamide (98% yield).

Refinement

C–bonded H atoms were placed in idealized positions and refined with a riding model approximation. Constrained C—H distances: 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) or 0.98 Å (methine CH). Isotropic displacement parameters: Uiso= 1.5Ueq(carrier C atom) for methyl groups and Uiso = 1.2Ueq(carrier C atom) otherwise. Methyl groups were considered as rigid rotating groups. Other H atoms (amine groups and water molecule) were found in a difference map and refined freely. Measured Friedel pairs (287) were merged.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit for the title compound, with the numbering scheme. Displacement ellipsoids for non–H atoms are drawn at the 40% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed bonds are hydrogen bonds involving N—H groups as donor groups.

Fig. 2.

Fig. 2.

A part of the packing structure for the title compound, showing the four H bonds formed by a water molecule, in a tetrahedral geometry (dashed bonds). Symmetry codes: (i) 1+x, y, z; (ii) 2-x, 1/2+y, 2-z. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C27H39N3O2·H2O Dx = 1.140 Mg m3
Mr = 455.63 Melting point = 398–401 K
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 60 reflections
a = 6.8476 (11) Å θ = 4.6–12.5º
b = 12.1101 (14) Å µ = 0.07 mm1
c = 16.012 (2) Å T = 298 (1) K
β = 91.173 (15)º Cell measurement pressure: 101(2) kPa
V = 1327.5 (3) Å3 Plate, colourless
Z = 2 0.6 × 0.6 × 0.2 mm
F000 = 496

Data collection

Bruker P4 diffractometer Rint = 0.035
Radiation source: fine-focus sealed tube θmax = 27.5º
Monochromator: Graphite θmin = 2.1º
T = 298(1) K h = −8→6
P = 101(2) kPa k = −1→15
ω scans l = −20→20
Absorption correction: none 3 standard reflections
6391 measured reflections every 97 reflections
3180 independent reflections intensity decay: 2%
2580 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: Full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107   w = 1/[σ2(Fo2) + (0.0551P)2 + 0.0694P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3180 reflections Δρmax = 0.14 e Å3
319 parameters Δρmin = −0.13 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.037 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6298 (3) 0.24506 (16) 0.95082 (10) 0.0520 (4)
N2 0.5268 (3) 0.37490 (17) 0.81930 (11) 0.0558 (5)
H2 0.636 (4) 0.374 (2) 0.8414 (14) 0.049 (6)*
N3 0.9690 (3) 0.29137 (18) 1.03447 (12) 0.0576 (5)
H3 0.926 (3) 0.330 (2) 0.9926 (17) 0.058 (7)*
O1 0.2258 (2) 0.29762 (18) 0.81492 (11) 0.0731 (5)
O2 0.9360 (4) 0.13912 (17) 1.11410 (13) 0.0893 (6)
C1 0.4749 (3) 0.30035 (19) 0.63787 (13) 0.0529 (5)
H1A 0.4642 0.2424 0.6803 0.063*
C2 0.5749 (3) 0.4058 (2) 0.66831 (13) 0.0556 (5)
H2A 0.7122 0.3869 0.6793 0.067*
C3 0.5733 (5) 0.4954 (2) 0.59935 (16) 0.0724 (7)
H3A 0.7040 0.5257 0.5955 0.087*
H3B 0.4877 0.5549 0.6162 0.087*
C4 0.5059 (6) 0.4548 (3) 0.51078 (18) 0.0866 (9)
H4A 0.4046 0.5037 0.4893 0.104*
H4B 0.6154 0.4589 0.4734 0.104*
C5 0.4292 (4) 0.3386 (2) 0.51132 (15) 0.0737 (7)
H5A 0.3843 0.3108 0.4567 0.088*
C6 0.2858 (3) 0.3192 (2) 0.58333 (14) 0.0598 (5)
C7 0.5754 (4) 0.2641 (2) 0.55738 (16) 0.0737 (7)
H7A 0.7103 0.2878 0.5536 0.088*
H7B 0.5613 0.1862 0.5445 0.088*
C8 0.1734 (5) 0.2103 (3) 0.5733 (2) 0.0834 (8)
H8A 0.0857 0.2152 0.5259 0.125*
H8B 0.1003 0.1964 0.6227 0.125*
H8C 0.2641 0.1510 0.5650 0.125*
C9 0.1402 (4) 0.4092 (3) 0.6038 (2) 0.0831 (8)
H9A 0.0386 0.4109 0.5617 0.125*
H9B 0.2057 0.4793 0.6057 0.125*
H9C 0.0843 0.3943 0.6572 0.125*
C10 0.4962 (4) 0.45157 (19) 0.74996 (14) 0.0597 (5)
H10A 0.5610 0.5209 0.7630 0.072*
H10B 0.3576 0.4663 0.7430 0.072*
C11 0.9333 (3) 0.3930 (2) 1.20404 (14) 0.0620 (6)
H11A 0.8147 0.3610 1.1788 0.074*
C12 1.0879 (3) 0.4242 (2) 1.14197 (14) 0.0604 (6)
H12A 1.0340 0.4855 1.1088 0.072*
C13 1.2723 (5) 0.4692 (3) 1.18754 (18) 0.0875 (9)
H13A 1.3080 0.5385 1.1616 0.105*
H13B 1.3784 0.4177 1.1788 0.105*
C14 1.2550 (5) 0.4890 (3) 1.28285 (19) 0.0920 (10)
H14A 1.3606 0.4507 1.3119 0.110*
H14B 1.2692 0.5673 1.2942 0.110*
C15 1.0623 (5) 0.4496 (3) 1.31641 (16) 0.0800 (8)
H15A 1.0455 0.4611 1.3764 0.096*
C16 1.0091 (4) 0.3322 (3) 1.28420 (15) 0.0737 (7)
C17 0.8967 (5) 0.4939 (3) 1.26053 (18) 0.0884 (9)
H17A 0.9245 0.5645 1.2346 0.106*
H17B 0.7699 0.4942 1.2865 0.106*
C18 0.8353 (7) 0.2817 (5) 1.3307 (2) 0.1257 (16)
H18A 0.8757 0.2633 1.3868 0.189*
H18B 0.7917 0.2162 1.3022 0.189*
H18C 0.7305 0.3343 1.3322 0.189*
C19 1.1675 (6) 0.2462 (3) 1.2809 (2) 0.0988 (11)
H19A 1.2788 0.2762 1.2533 0.148*
H19B 1.1201 0.1829 1.2505 0.148*
H19C 1.2047 0.2245 1.3366 0.148*
C20 1.1400 (3) 0.3334 (2) 1.08030 (14) 0.0637 (6)
H20A 1.2328 0.3622 1.0409 0.076*
H20B 1.2024 0.2731 1.1104 0.076*
C21 0.3935 (3) 0.3035 (2) 0.84428 (13) 0.0548 (5)
C22 0.4577 (3) 0.22560 (19) 0.91276 (13) 0.0540 (5)
C23 0.3379 (4) 0.1377 (2) 0.93392 (16) 0.0700 (7)
H23A 0.2180 0.1270 0.9068 0.084*
C24 0.4017 (5) 0.0662 (3) 0.99674 (19) 0.0831 (8)
H24A 0.3253 0.0063 1.0120 0.100*
C25 0.5781 (5) 0.0851 (2) 1.03575 (16) 0.0756 (7)
H25A 0.6238 0.0381 1.0777 0.091*
C26 0.6875 (4) 0.17521 (19) 1.01182 (13) 0.0580 (5)
C27 0.8771 (4) 0.2008 (2) 1.05701 (14) 0.0625 (6)
O3 0.9282 (3) 0.42517 (19) 0.87612 (13) 0.0712 (5)
H31 0.970 (6) 0.493 (4) 0.871 (2) 0.103 (12)*
H32 1.020 (6) 0.384 (4) 0.851 (2) 0.111 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0609 (10) 0.0502 (9) 0.0449 (8) −0.0055 (8) 0.0042 (7) −0.0049 (8)
N2 0.0580 (10) 0.0596 (11) 0.0496 (9) −0.0052 (9) −0.0080 (8) −0.0031 (8)
N3 0.0677 (11) 0.0598 (11) 0.0448 (9) 0.0007 (10) −0.0059 (8) −0.0011 (9)
O1 0.0527 (8) 0.0858 (12) 0.0805 (11) −0.0020 (9) −0.0054 (8) −0.0119 (10)
O2 0.1293 (17) 0.0611 (11) 0.0760 (12) 0.0033 (12) −0.0296 (11) 0.0112 (10)
C1 0.0608 (11) 0.0457 (10) 0.0521 (10) 0.0023 (10) −0.0015 (9) −0.0007 (9)
C2 0.0563 (11) 0.0551 (12) 0.0553 (11) −0.0027 (10) −0.0024 (9) −0.0011 (10)
C3 0.0943 (18) 0.0577 (14) 0.0651 (14) −0.0191 (14) −0.0012 (13) 0.0020 (12)
C4 0.127 (2) 0.0740 (17) 0.0585 (14) −0.0293 (18) −0.0019 (15) 0.0070 (13)
C5 0.1024 (19) 0.0689 (16) 0.0497 (12) −0.0215 (15) −0.0041 (12) −0.0041 (12)
C6 0.0670 (13) 0.0535 (12) 0.0584 (12) −0.0066 (11) −0.0102 (9) 0.0019 (10)
C7 0.0846 (16) 0.0659 (15) 0.0711 (15) −0.0043 (13) 0.0138 (13) −0.0193 (13)
C8 0.0909 (18) 0.0741 (18) 0.0846 (18) −0.0257 (16) −0.0117 (15) −0.0012 (15)
C9 0.0700 (15) 0.0827 (18) 0.096 (2) 0.0101 (15) −0.0225 (14) −0.0004 (16)
C10 0.0726 (13) 0.0508 (12) 0.0553 (11) −0.0009 (11) −0.0083 (10) −0.0044 (10)
C11 0.0634 (13) 0.0698 (15) 0.0523 (11) 0.0122 (11) −0.0061 (9) −0.0083 (11)
C12 0.0732 (14) 0.0547 (13) 0.0527 (11) 0.0017 (11) −0.0121 (10) 0.0028 (10)
C13 0.0916 (19) 0.100 (2) 0.0709 (16) −0.0322 (18) −0.0087 (14) −0.0056 (16)
C14 0.118 (2) 0.088 (2) 0.0689 (16) −0.0129 (19) −0.0287 (16) −0.0106 (15)
C15 0.105 (2) 0.0843 (19) 0.0502 (12) 0.0075 (17) −0.0120 (12) −0.0118 (13)
C16 0.0944 (17) 0.0774 (18) 0.0491 (12) −0.0003 (15) −0.0076 (11) 0.0035 (12)
C17 0.102 (2) 0.092 (2) 0.0702 (16) 0.0267 (18) −0.0074 (14) −0.0248 (16)
C18 0.154 (3) 0.151 (4) 0.0734 (19) −0.040 (3) 0.026 (2) 0.006 (2)
C19 0.145 (3) 0.0752 (19) 0.0743 (17) 0.023 (2) −0.0426 (19) 0.0044 (16)
C20 0.0604 (12) 0.0768 (17) 0.0539 (11) 0.0021 (12) −0.0013 (9) −0.0068 (12)
C21 0.0500 (11) 0.0603 (12) 0.0542 (11) −0.0010 (10) 0.0036 (8) −0.0155 (10)
C22 0.0580 (12) 0.0564 (12) 0.0481 (10) −0.0066 (10) 0.0098 (9) −0.0131 (9)
C23 0.0706 (15) 0.0743 (16) 0.0654 (14) −0.0205 (13) 0.0127 (11) −0.0153 (13)
C24 0.101 (2) 0.0730 (17) 0.0755 (16) −0.0347 (16) 0.0194 (15) 0.0035 (14)
C25 0.108 (2) 0.0615 (15) 0.0573 (13) −0.0187 (15) 0.0054 (13) 0.0036 (12)
C26 0.0786 (14) 0.0501 (11) 0.0456 (10) −0.0036 (11) 0.0059 (10) −0.0029 (9)
C27 0.0860 (16) 0.0513 (12) 0.0501 (11) 0.0064 (12) −0.0031 (11) −0.0034 (10)
O3 0.0613 (10) 0.0674 (12) 0.0853 (12) −0.0080 (10) 0.0110 (8) −0.0047 (10)

Geometric parameters (Å, °)

N1—C22 1.337 (3) C11—C17 1.544 (4)
N1—C26 1.345 (3) C11—C16 1.559 (3)
N2—C21 1.325 (3) C11—H11A 0.9800
N2—C10 1.459 (3) C12—C20 1.525 (4)
N2—H2 0.82 (2) C12—C13 1.545 (4)
N3—C27 1.318 (3) C12—H12A 0.9800
N3—C20 1.461 (3) C13—C14 1.552 (4)
N3—H3 0.86 (3) C13—H13A 0.9700
O1—C21 1.234 (3) C13—H13B 0.9700
O2—C27 1.242 (3) C14—C15 1.512 (5)
C1—C2 1.524 (3) C14—H14A 0.9700
C1—C7 1.537 (3) C14—H14B 0.9700
C1—C6 1.564 (3) C15—C17 1.527 (4)
C1—H1A 0.9800 C15—C16 1.553 (4)
C2—C10 1.528 (3) C15—H15A 0.9800
C2—C3 1.548 (3) C16—C19 1.506 (5)
C2—H2A 0.9800 C16—C18 1.543 (5)
C3—C4 1.562 (4) C17—H17A 0.9700
C3—H3A 0.9700 C17—H17B 0.9700
C3—H3B 0.9700 C18—H18A 0.9600
C4—C5 1.502 (4) C18—H18B 0.9600
C4—H4A 0.9700 C18—H18C 0.9600
C4—H4B 0.9700 C19—H19A 0.9600
C5—C7 1.526 (4) C19—H19B 0.9600
C5—C6 1.548 (4) C19—H19C 0.9600
C5—H5A 0.9800 C20—H20A 0.9700
C6—C9 1.518 (4) C20—H20B 0.9700
C6—C8 1.534 (4) C21—C22 1.505 (3)
C7—H7A 0.9700 C22—C23 1.390 (4)
C7—H7B 0.9700 C23—C24 1.391 (4)
C8—H8A 0.9600 C23—H23A 0.9300
C8—H8B 0.9600 C24—C25 1.368 (4)
C8—H8C 0.9600 C24—H24A 0.9300
C9—H9A 0.9600 C25—C26 1.382 (4)
C9—H9B 0.9600 C25—H25A 0.9300
C9—H9C 0.9600 C26—C27 1.506 (3)
C10—H10A 0.9700 O3—H31 0.87 (5)
C10—H10B 0.9700 O3—H32 0.90 (4)
C11—C12 1.514 (4)
C22—N1—C26 117.60 (19) C20—C12—C13 111.1 (2)
C21—N2—C10 123.8 (2) C11—C12—H12A 106.5
C21—N2—H2 119.2 (17) C20—C12—H12A 106.5
C10—N2—H2 116.9 (17) C13—C12—H12A 106.5
C27—N3—C20 122.3 (2) C12—C13—C14 116.2 (3)
C27—N3—H3 120.2 (17) C12—C13—H13A 108.2
C20—N3—H3 117.4 (17) C14—C13—H13A 108.2
C2—C1—C7 107.55 (19) C12—C13—H13B 108.2
C2—C1—C6 114.69 (18) C14—C13—H13B 108.2
C7—C1—C6 87.32 (18) H13A—C13—H13B 107.4
C2—C1—H1A 114.7 C15—C14—C13 112.7 (2)
C7—C1—H1A 114.7 C15—C14—H14A 109.1
C6—C1—H1A 114.7 C13—C14—H14A 109.1
C1—C2—C10 114.43 (19) C15—C14—H14B 109.1
C1—C2—C3 111.28 (17) C13—C14—H14B 109.1
C10—C2—C3 111.0 (2) H14A—C14—H14B 107.8
C1—C2—H2A 106.5 C14—C15—C17 108.9 (3)
C10—C2—H2A 106.5 C14—C15—C16 111.8 (3)
C3—C2—H2A 106.5 C17—C15—C16 87.8 (2)
C2—C3—C4 115.1 (2) C14—C15—H15A 115.1
C2—C3—H3A 108.5 C17—C15—H15A 115.1
C4—C3—H3A 108.5 C16—C15—H15A 115.1
C2—C3—H3B 108.5 C19—C16—C18 107.8 (3)
C4—C3—H3B 108.5 C19—C16—C15 118.8 (3)
H3A—C3—H3B 107.5 C18—C16—C15 112.3 (3)
C5—C4—C3 112.8 (2) C19—C16—C11 121.7 (2)
C5—C4—H4A 109.0 C18—C16—C11 109.7 (3)
C3—C4—H4A 109.0 C15—C16—C11 85.0 (2)
C5—C4—H4B 109.0 C15—C17—C11 86.4 (2)
C3—C4—H4B 109.0 C15—C17—H17A 114.3
H4A—C4—H4B 107.8 C11—C17—H17A 114.3
C4—C5—C7 109.3 (2) C15—C17—H17B 114.3
C4—C5—C6 111.9 (2) C11—C17—H17B 114.2
C7—C5—C6 88.31 (19) H17A—C17—H17B 111.4
C4—C5—H5A 114.8 C16—C18—H18A 109.5
C7—C5—H5A 114.8 C16—C18—H18B 109.5
C6—C5—H5A 114.8 H18A—C18—H18B 109.5
C9—C6—C8 108.1 (2) C16—C18—H18C 109.5
C9—C6—C5 118.8 (2) H18A—C18—H18C 109.5
C8—C6—C5 112.2 (2) H18B—C18—H18C 109.5
C9—C6—C1 121.6 (2) C16—C19—H19A 109.5
C8—C6—C1 109.9 (2) C16—C19—H19B 109.5
C5—C6—C1 84.67 (18) H19A—C19—H19B 109.5
C5—C7—C1 86.32 (19) C16—C19—H19C 109.5
C5—C7—H7A 114.3 H19A—C19—H19C 109.5
C1—C7—H7A 114.3 H19B—C19—H19C 109.5
C5—C7—H7B 114.3 N3—C20—C12 112.38 (19)
C1—C7—H7B 114.3 N3—C20—H20A 109.1
H7A—C7—H7B 111.4 C12—C20—H20A 109.1
C6—C8—H8A 109.5 N3—C20—H20B 109.1
C6—C8—H8B 109.5 C12—C20—H20B 109.1
H8A—C8—H8B 109.5 H20A—C20—H20B 107.9
C6—C8—H8C 109.5 O1—C21—N2 124.4 (2)
H8A—C8—H8C 109.5 O1—C21—C22 119.8 (2)
H8B—C8—H8C 109.5 N2—C21—C22 115.86 (18)
C6—C9—H9A 109.5 N1—C22—C23 122.9 (2)
C6—C9—H9B 109.5 N1—C22—C21 117.59 (19)
H9A—C9—H9B 109.5 C23—C22—C21 119.5 (2)
C6—C9—H9C 109.5 C22—C23—C24 118.4 (2)
H9A—C9—H9C 109.5 C22—C23—H23A 120.8
H9B—C9—H9C 109.5 C24—C23—H23A 120.8
N2—C10—C2 111.88 (19) C25—C24—C23 119.2 (3)
N2—C10—H10A 109.2 C25—C24—H24A 120.4
C2—C10—H10A 109.2 C23—C24—H24A 120.4
N2—C10—H10B 109.2 C24—C25—C26 118.9 (3)
C2—C10—H10B 109.2 C24—C25—H25A 120.5
H10A—C10—H10B 107.9 C26—C25—H25A 120.5
C12—C11—C17 108.1 (2) N1—C26—C25 123.0 (2)
C12—C11—C16 115.7 (2) N1—C26—C27 117.2 (2)
C17—C11—C16 86.95 (19) C25—C26—C27 119.7 (2)
C12—C11—H11A 114.3 O2—C27—N3 123.5 (2)
C17—C11—H11A 114.3 O2—C27—C26 119.6 (2)
C16—C11—H11A 114.3 N3—C27—C26 116.9 (2)
C11—C12—C20 114.9 (2) H31—O3—H32 103 (4)
C11—C12—C13 110.7 (2)
C7—C1—C2—C10 −178.2 (2) C14—C15—C16—C18 168.8 (3)
C6—C1—C2—C10 86.5 (2) C17—C15—C16—C18 −81.7 (3)
C7—C1—C2—C3 54.9 (3) C14—C15—C16—C11 −81.9 (2)
C6—C1—C2—C3 −40.3 (3) C17—C15—C16—C11 27.6 (2)
C1—C2—C3—C4 −10.1 (4) C12—C11—C16—C19 −39.6 (4)
C10—C2—C3—C4 −138.8 (3) C17—C11—C16—C19 −148.2 (3)
C2—C3—C4—C5 7.6 (4) C12—C11—C16—C18 −166.7 (3)
C3—C4—C5—C7 −50.0 (4) C17—C11—C16—C18 84.7 (3)
C3—C4—C5—C6 46.1 (4) C12—C11—C16—C15 81.3 (3)
C4—C5—C6—C9 40.2 (3) C17—C11—C16—C15 −27.3 (2)
C7—C5—C6—C9 150.4 (2) C14—C15—C17—C11 84.4 (3)
C4—C5—C6—C8 167.5 (3) C16—C15—C17—C11 −27.8 (2)
C7—C5—C6—C8 −82.3 (2) C12—C11—C17—C15 −88.3 (2)
C4—C5—C6—C1 −83.1 (2) C16—C11—C17—C15 27.7 (2)
C7—C5—C6—C1 27.07 (17) C27—N3—C20—C12 −97.3 (3)
C2—C1—C6—C9 −39.5 (3) C11—C12—C20—N3 55.0 (3)
C7—C1—C6—C9 −147.6 (3) C13—C12—C20—N3 −178.4 (2)
C2—C1—C6—C8 −167.1 (2) C10—N2—C21—O1 −4.0 (3)
C7—C1—C6—C8 84.8 (2) C10—N2—C21—C22 175.63 (19)
C2—C1—C6—C5 81.2 (2) C26—N1—C22—C23 0.4 (3)
C7—C1—C6—C5 −26.87 (18) C26—N1—C22—C21 −179.78 (18)
C4—C5—C7—C1 85.2 (3) O1—C21—C22—N1 −170.6 (2)
C6—C5—C7—C1 −27.51 (18) N2—C21—C22—N1 9.8 (3)
C2—C1—C7—C5 −87.9 (2) O1—C21—C22—C23 9.3 (3)
C6—C1—C7—C5 27.22 (18) N2—C21—C22—C23 −170.4 (2)
C21—N2—C10—C2 −95.3 (3) N1—C22—C23—C24 −0.9 (4)
C1—C2—C10—N2 62.7 (2) C21—C22—C23—C24 179.2 (2)
C3—C2—C10—N2 −170.3 (2) C22—C23—C24—C25 0.5 (4)
C17—C11—C12—C20 −179.3 (2) C23—C24—C25—C26 0.3 (4)
C16—C11—C12—C20 85.2 (3) C22—N1—C26—C25 0.6 (3)
C17—C11—C12—C13 53.8 (3) C22—N1—C26—C27 −177.24 (19)
C16—C11—C12—C13 −41.6 (3) C24—C25—C26—N1 −0.9 (4)
C11—C12—C13—C14 −8.2 (4) C24—C25—C26—C27 176.8 (3)
C20—C12—C13—C14 −137.1 (3) C20—N3—C27—O2 −6.1 (4)
C12—C13—C14—C15 5.6 (5) C20—N3—C27—C26 171.8 (2)
C13—C14—C15—C17 −48.7 (4) N1—C26—C27—O2 179.6 (2)
C13—C14—C15—C16 46.6 (4) C25—C26—C27—O2 1.8 (3)
C14—C15—C16—C19 41.7 (3) N1—C26—C27—N3 1.6 (3)
C17—C15—C16—C19 151.2 (3) C25—C26—C27—N3 −176.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.82 (2) 2.16 (2) 2.941 (3) 160 (2)
N3—H3···O3 0.86 (3) 2.19 (3) 3.017 (3) 159 (2)
O3—H31···O2i 0.87 (5) 1.90 (5) 2.756 (3) 167 (4)
O3—H32···O1ii 0.90 (4) 1.86 (5) 2.754 (3) 171 (3)

Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2088).

References

  1. Cason, C. J. (2004). POV-RAY for Windows Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). J. Chem. Soc. Dalton Trans., pp. 862–871. [DOI] [PubMed]
  4. Odriozola, I., Kyritsakas, N. & Lehn, J.-M. (2004). Chem. Commun. pp. 62–63. [DOI] [PubMed]
  5. Pérez-Flores, F. J. & Gutiérrez, R. (2008). Synthesis. Submitted.
  6. Qi, J. Y., Chen, J., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2002). Acta Cryst. E58, o1232–o1233.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Tanaka, K. & Toda, F. (2000). Chem. Rev.100, 1025–1074. [DOI] [PubMed]
  10. Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.
  11. Vázquez, J., Bernès, S., Reyes, Y., Moya, M., Sharma, P., Alvarez, C. & Gutiérrez, R. (2004). Synthesis, pp. 1955–1958.
  12. Yu, Q., Baroni, T. E., Borovik, A. S., Liable-Sands, L., Yap, G. P. A. & Rheingold, A. L. (1999). Chem. Commun. pp. 1467–1468.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013652/rk2088sup1.cif

e-64-o1078-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013652/rk2088Isup2.hkl

e-64-o1078-Isup2.hkl (156KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES