Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 3;64(Pt 6):o952–o953. doi: 10.1107/S1600536808012361

4-Benzyl-3-(2-fur­yl)-1H-1,2,4-triazole-5(4H)-thione hemihydrate

Muhammad Zareef a,*, Rashid Iqbal a, Masood Parvez b
PMCID: PMC2961370  PMID: 21202686

Abstract

In the asymmetric unit of the title compound, C13H11N3OS·0.5H2O, there are two independent mol­ecules of 4-benzyl-3-(2-fur­yl)-1H-1,2,4-triazole-5(4H)-thione and a water mol­ecule of hydration. The conformation of the two organic mol­ecules is slightly different, the dihedral angles formed by the furyl and triazole rings being 5.63 (15) and 17.66 (13)°. The water mol­ecule of hydration links three adjacent triazole mol­ecules to form a cluster via inter­molecular O—H⋯S, N—H⋯S and N—H⋯O hydrogen bonds, generating a 10-membered ring of graph set R 3 3(10). The crystal structure is further stabilized by intra- and inter­molecular C—H⋯S, C—H⋯O and C—H⋯N hydrogen bonds and by π–π stacking inter­actions involving the furyl and triazole rings of centrosymmetrically related mol­ecules, with a centroid–centroid separation of 3.470 (2) Å.

Related literature

For related literature, see: Ahmad et al. (2001); Altman & Solomost (1993); Chai et al. (2003); Dege et al. (2004); Hashimoto et al. (1990); Kanazawa et al. (1988); Öztürk et al. (2004); Yıldırım et al. (2004); Bernstein et al. (1995); Etter (1990).graphic file with name e-64-0o952-scheme1.jpg

Experimental

Crystal data

  • C13H11N3OS·0.5H2O

  • M r = 266.33

  • Triclinic, Inline graphic

  • a = 6.082 (2) Å

  • b = 12.069 (4) Å

  • c = 17.818 (5) Å

  • α = 92.43 (2)°

  • β = 94.35 (2)°

  • γ = 103.83 (2)°

  • V = 1263.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 (2) K

  • 0.18 × 0.16 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.956, T max = 0.990

  • 10729 measured reflections

  • 5735 independent reflections

  • 4365 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.096

  • S = 1.03

  • 5735 reflections

  • 347 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012361/rz2207sup1.cif

e-64-0o952-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012361/rz2207Isup2.hkl

e-64-0o952-Isup2.hkl (275.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N5i 0.85 (2) 2.08 (2) 2.906 (2) 165 (2)
N1—H1A⋯S2ii 0.88 (2) 2.47 (2) 3.267 (2) 151 (2)
N4—H4A⋯O3iii 0.89 (2) 1.81 (2) 2.697 (2) 174 (2)
C7—H7A⋯N2iv 0.99 2.60 3.304 (3) 128
C7—H7B⋯O1iv 0.99 2.59 3.440 (2) 144
O3—H3B⋯S1 0.85 (2) 2.50 (2) 3.320 (2) 162 (2)
C7—H7A⋯S1 0.99 2.74 3.237 (2) 112
C9—H9⋯N3 0.95 2.56 2.893 (2) 101
C26—H26⋯N6 0.95 2.58 2.903 (3) 100
C20—H20B⋯S2 0.99 2.78 3.214 (2) 107

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Recently, much attention has been focused on disubstituted 1,2,4-triazole derivatives for their broad-spectrum biological and pharmacological activities, such as fungicidal, herbicidal, anticonvulsant, antitumoral and inhibition of cholesterol (Chai et al., 2003; Kanazawa et al., 1988; Hashimoto et al., 1990). In addition, they have many applications in agriculture domain (Altman & Solomost, 1993). In this paper, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound is composed of two independent molecules (hereafter called A and B) depicted in Fig. 1 and 2, respectively, and a water molecule of hydration. The furyl and triazole rings in molecule A are substantially planar (maximum deviation 0.0586 (13) Å for atom N2), with the S1 atom 0.1980 (16) Å out of this plane; the mean-planes of the furyl and triazole form a dihedral angle of 5.63 (15)°. The corresponding furyl and triazole rings in molecule B are far from planar with atoms O2 and C17 deviating from the plane by 0.2571 (11) and -0.1633 (15) Å, respectively. The mean-planes of the five-membered rings in molecule B form an angle 17.66 (13)°. In both molecules, the benzyl rings are oriented at 80.72 (4) and 80.70 (4)°, from the planes formed by the ten atoms of the furyl and triazole rings in the molecules A and B, respectively. Bond distances and angles in the two molecules agree well with each other. Similar bond distances and bond angles have been reported in compounds closely related to the title compound, e.g., 4-chlorophenyl analogue (Öztürk et al., 2004), 4-methoxyphenyl analogue (Yıldırım et al., 2004) and 4-p-tolyl (Dege et al., 2004); in all these compounds, the mean-planes of the phenyl rings and those of the furyl and triazole rings lie close to right angles. The water molecule of hydration links three adjacent molecules of the title compound to form a cluster via intermolecular hydrogen bonds (Fig. 3, Table 1), forming a 10-membered ring of graph set R33(10) (Etter, 1990; Bernstein et al., 1995). Nonconventional intermolecular C—H···N and C—H···O H-bonds are also present in addition to intramolecular C—H···S and C—H···N hydrogen interactions (Table 1). The crystal structure is further stabilized by π-π stacking interactions involving centrosymmetrically related furyl and triazole rings at (x, y, z) and (1-x, -y, -z) with a centroid-centroid separation of 3.470 (2) Å.

Experimental

The title compound was prepared from the corresponding thiosemicarbazide by following the reported procedure (Ahmad et al., 2001). 4-Benzyl-1-(2-furoyl)thiosemicarbazide (10 mmol) was dissolved in an aqueous 4 N sodium hydroxide solution (50 ml). The solution was heated to reflux for 7 h, cooled and filtered. The filtrate was acidified to pH of 4–5, with 4 N hydrochloric acid. The solid crude product was filtered off, washed with water and recrystallized from aqueous ethanol (60%). Crystals of the title compound were grown by slow evaporation of an ethanol solution over 11 days at room temperature (yield 81%).

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in the riding-model approximation with the following constraints: benzyl/furyl and methylene C—H distances were set to 0.95 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). H-atoms bonded to N– and water of hydration were located from a difference Fourier map and were allowed to refine with Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant feature.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of molecule A with displacement ellipsoids plotted at the 50% probability level.

Fig. 2.

Fig. 2.

ORTEP-3 (Farrugia, 1997) drawing of molecule B with displacement ellipsoids plotted at the 50% probability level.

Fig. 3.

Fig. 3.

Packing diagram of the title compound showing intermolecular hydrogen bonds as dashed lines. H atoms not involved in H bonding are omitted for clarity.

Crystal data

C13H11N3OS·0.5H2O Z = 4
Mr = 266.33 F000 = 556
Triclinic, P1 Dx = 1.400 Mg m3
Hall symbol: -P 1 Melting point = 458–459 K
a = 6.082 (2) Å Mo Kα radiation λ = 0.71073 Å
b = 12.069 (4) Å Cell parameters from 10729 reflections
c = 17.818 (5) Å θ = 3.0–27.5º
α = 92.43 (2)º µ = 0.25 mm1
β = 94.35 (2)º T = 173 (2) K
γ = 103.83 (2)º Plate, colourless
V = 1263.9 (7) Å3 0.18 × 0.16 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer 5735 independent reflections
Radiation source: fine-focus sealed tube 4365 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
T = 173(2) K θmax = 27.5º
ω and φ scans θmin = 3.0º
Absorption correction: Multi-scan(SORTAV; Blessing, 1997) h = −7→7
Tmin = 0.956, Tmax = 0.990 k = −15→15
10729 measured reflections l = −23→23

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039   w = 1/[σ2(Fo2) + (0.0384P)2 + 0.468P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.22 e Å3
5735 reflections Δρmin = −0.24 e Å3
347 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.012 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.34044 (8) 0.05680 (4) 0.28003 (3) 0.03056 (13)
S2 −0.20179 (8) 0.77953 (4) 0.25164 (2) 0.02763 (13)
O1 0.8468 (2) 0.08820 (11) −0.01137 (7) 0.0305 (3)
O2 0.5602 (2) 0.82229 (11) 0.51122 (7) 0.0325 (3)
O3 0.7588 (3) 0.03225 (11) 0.40424 (8) 0.0333 (3)
H3A 0.752 (4) 0.0567 (19) 0.4491 (13) 0.040*
H3B 0.633 (4) 0.0293 (19) 0.3796 (13) 0.040*
N1 0.6822 (3) 0.01773 (13) 0.20087 (8) 0.0260 (3)
H1A 0.725 (3) −0.0312 (17) 0.2307 (11) 0.031*
N2 0.7734 (3) 0.03375 (13) 0.13290 (8) 0.0268 (3)
N3 0.4856 (2) 0.11614 (11) 0.14138 (8) 0.0213 (3)
N4 0.0028 (3) 0.87457 (12) 0.38823 (8) 0.0247 (3)
H4A −0.085 (3) 0.9228 (17) 0.3954 (11) 0.030*
N5 0.1725 (3) 0.86844 (12) 0.44183 (8) 0.0254 (3)
N6 0.1475 (2) 0.74212 (11) 0.34577 (8) 0.0222 (3)
C1 0.5050 (3) 0.06404 (14) 0.20819 (9) 0.0232 (4)
C2 0.6504 (3) 0.09428 (14) 0.09778 (9) 0.0223 (4)
C3 0.6860 (3) 0.13059 (14) 0.02235 (9) 0.0240 (4)
C4 0.5984 (4) 0.19649 (17) −0.02503 (10) 0.0371 (5)
H4 0.4838 0.2354 −0.0155 0.044*
C5 0.7116 (4) 0.19619 (17) −0.09219 (11) 0.0393 (5)
H5 0.6871 0.2351 −0.1361 0.047*
C6 0.8591 (3) 0.13059 (16) −0.08148 (10) 0.0331 (4)
H6 0.9580 0.1156 −0.1173 0.040*
C7 0.3061 (3) 0.17367 (14) 0.12078 (10) 0.0243 (4)
H7A 0.1900 0.1564 0.1574 0.029*
H7B 0.2319 0.1417 0.0705 0.029*
C8 0.3862 (3) 0.30216 (14) 0.11841 (9) 0.0246 (4)
C9 0.5982 (3) 0.36345 (15) 0.14907 (10) 0.0296 (4)
H9 0.7004 0.3246 0.1729 0.035*
C10 0.6630 (4) 0.48138 (16) 0.14531 (11) 0.0371 (5)
H10 0.8090 0.5228 0.1665 0.045*
C11 0.5153 (4) 0.53864 (17) 0.11072 (11) 0.0404 (5)
H11 0.5599 0.6192 0.1079 0.048*
C12 0.3028 (4) 0.47821 (17) 0.08038 (12) 0.0414 (5)
H12 0.2006 0.5174 0.0570 0.050*
C13 0.2381 (3) 0.36062 (16) 0.08393 (11) 0.0335 (4)
H13 0.0918 0.3195 0.0627 0.040*
C14 −0.0174 (3) 0.79991 (14) 0.32916 (9) 0.0223 (4)
C15 0.2585 (3) 0.78665 (14) 0.41473 (9) 0.0233 (4)
C16 0.4402 (3) 0.74833 (15) 0.45380 (9) 0.0242 (4)
C17 0.5195 (3) 0.65286 (16) 0.44984 (10) 0.0303 (4)
H17 0.4653 0.5884 0.4151 0.036*
C18 0.7002 (3) 0.66805 (17) 0.50797 (10) 0.0321 (4)
H18 0.7905 0.6157 0.5196 0.039*
C19 0.7177 (3) 0.77051 (17) 0.54297 (11) 0.0332 (4)
H19 0.8252 0.8028 0.5843 0.040*
C20 0.2004 (3) 0.65628 (14) 0.29446 (9) 0.0239 (4)
H20A 0.3674 0.6670 0.2974 0.029*
H20B 0.1489 0.6693 0.2422 0.029*
C21 0.0932 (3) 0.53434 (14) 0.31051 (9) 0.0226 (4)
C22 0.1902 (3) 0.44799 (16) 0.28516 (10) 0.0307 (4)
H22 0.3270 0.4668 0.2610 0.037*
C23 0.0880 (4) 0.33463 (17) 0.29509 (11) 0.0389 (5)
H23 0.1549 0.2760 0.2774 0.047*
C24 −0.1094 (4) 0.30642 (17) 0.33038 (12) 0.0405 (5)
H24 −0.1788 0.2285 0.3369 0.049*
C25 −0.2063 (4) 0.39117 (18) 0.35627 (12) 0.0410 (5)
H25 −0.3424 0.3719 0.3808 0.049*
C26 −0.1044 (3) 0.50534 (16) 0.34637 (11) 0.0318 (4)
H26 −0.1714 0.5637 0.3644 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0307 (3) 0.0369 (3) 0.0255 (2) 0.0094 (2) 0.00647 (18) 0.00482 (19)
S2 0.0285 (3) 0.0262 (2) 0.0270 (2) 0.00626 (19) −0.00410 (18) 0.00176 (17)
O1 0.0316 (7) 0.0369 (7) 0.0265 (6) 0.0140 (6) 0.0061 (5) 0.0016 (5)
O2 0.0357 (8) 0.0306 (7) 0.0296 (7) 0.0091 (6) −0.0090 (6) −0.0012 (5)
O3 0.0415 (9) 0.0352 (7) 0.0271 (7) 0.0190 (7) −0.0012 (6) −0.0030 (6)
N1 0.0273 (8) 0.0293 (8) 0.0243 (7) 0.0114 (7) 0.0023 (6) 0.0072 (6)
N2 0.0280 (8) 0.0299 (8) 0.0256 (8) 0.0116 (7) 0.0040 (6) 0.0065 (6)
N3 0.0206 (8) 0.0218 (7) 0.0225 (7) 0.0071 (6) 0.0008 (6) 0.0029 (5)
N4 0.0268 (8) 0.0231 (7) 0.0253 (7) 0.0093 (6) −0.0010 (6) 0.0007 (6)
N5 0.0266 (8) 0.0262 (7) 0.0237 (7) 0.0083 (6) −0.0019 (6) 0.0009 (6)
N6 0.0233 (8) 0.0199 (7) 0.0232 (7) 0.0055 (6) 0.0011 (6) 0.0008 (6)
C1 0.0241 (9) 0.0213 (8) 0.0230 (8) 0.0044 (7) −0.0010 (7) 0.0003 (7)
C2 0.0221 (9) 0.0212 (8) 0.0243 (8) 0.0072 (7) 0.0009 (7) 0.0005 (7)
C3 0.0236 (9) 0.0258 (9) 0.0235 (8) 0.0073 (7) 0.0040 (7) −0.0004 (7)
C4 0.0512 (13) 0.0423 (11) 0.0282 (10) 0.0277 (10) 0.0126 (9) 0.0110 (8)
C5 0.0592 (14) 0.0384 (11) 0.0263 (10) 0.0194 (10) 0.0126 (9) 0.0103 (8)
C6 0.0382 (12) 0.0355 (10) 0.0256 (9) 0.0070 (9) 0.0097 (8) 0.0007 (8)
C7 0.0211 (9) 0.0257 (9) 0.0276 (9) 0.0093 (7) 0.0002 (7) 0.0019 (7)
C8 0.0304 (10) 0.0245 (9) 0.0210 (8) 0.0109 (8) 0.0022 (7) 0.0008 (7)
C9 0.0339 (11) 0.0281 (9) 0.0272 (9) 0.0108 (8) −0.0036 (8) 0.0004 (7)
C10 0.0440 (12) 0.0290 (10) 0.0328 (10) 0.0016 (9) −0.0062 (9) −0.0021 (8)
C11 0.0609 (15) 0.0250 (10) 0.0350 (11) 0.0113 (10) −0.0012 (10) 0.0037 (8)
C12 0.0549 (14) 0.0336 (11) 0.0405 (11) 0.0231 (10) −0.0070 (10) 0.0053 (9)
C13 0.0327 (11) 0.0320 (10) 0.0371 (10) 0.0131 (9) −0.0046 (8) 0.0007 (8)
C14 0.0213 (9) 0.0193 (8) 0.0262 (8) 0.0034 (7) 0.0038 (7) 0.0052 (7)
C15 0.0238 (9) 0.0227 (8) 0.0224 (8) 0.0037 (7) 0.0020 (7) 0.0022 (7)
C16 0.0238 (9) 0.0274 (9) 0.0207 (8) 0.0055 (7) −0.0001 (7) 0.0013 (7)
C17 0.0305 (10) 0.0340 (10) 0.0280 (9) 0.0123 (8) 0.0009 (8) −0.0012 (8)
C18 0.0279 (10) 0.0413 (11) 0.0308 (10) 0.0150 (9) 0.0016 (8) 0.0057 (8)
C19 0.0281 (10) 0.0427 (11) 0.0281 (9) 0.0090 (9) −0.0058 (8) 0.0069 (8)
C20 0.0253 (9) 0.0244 (9) 0.0228 (8) 0.0068 (7) 0.0053 (7) 0.0005 (7)
C21 0.0246 (9) 0.0237 (8) 0.0202 (8) 0.0080 (7) −0.0001 (7) 0.0011 (7)
C22 0.0390 (11) 0.0327 (10) 0.0248 (9) 0.0165 (9) 0.0043 (8) 0.0012 (7)
C23 0.0612 (15) 0.0280 (10) 0.0306 (10) 0.0201 (10) −0.0055 (10) −0.0015 (8)
C24 0.0527 (14) 0.0241 (9) 0.0384 (11) 0.0019 (9) −0.0137 (10) 0.0062 (8)
C25 0.0339 (12) 0.0383 (11) 0.0485 (12) 0.0020 (9) 0.0050 (9) 0.0146 (10)
C26 0.0296 (11) 0.0277 (9) 0.0402 (11) 0.0091 (8) 0.0085 (8) 0.0049 (8)

Geometric parameters (Å, °)

S1—C1 1.676 (2) C8—C9 1.382 (3)
S2—C14 1.682 (2) C8—C13 1.394 (2)
O1—C6 1.370 (2) C9—C10 1.389 (3)
O1—C3 1.372 (2) C9—H9 0.9500
O2—C19 1.364 (2) C10—C11 1.383 (3)
O2—C16 1.369 (2) C10—H10 0.9500
O3—H3A 0.85 (2) C11—C12 1.380 (3)
O3—H3B 0.85 (2) C11—H11 0.9500
N1—C1 1.339 (2) C12—C13 1.385 (3)
N1—N2 1.372 (2) C12—H12 0.9500
N1—H1A 0.88 (2) C13—H13 0.9500
N2—C2 1.309 (2) C15—C16 1.440 (2)
N3—C1 1.380 (2) C16—C17 1.353 (2)
N3—C2 1.380 (2) C17—C18 1.425 (3)
N3—C7 1.460 (2) C17—H17 0.9500
N4—C14 1.335 (2) C18—C19 1.338 (3)
N4—N5 1.370 (2) C18—H18 0.9500
N4—H4A 0.89 (2) C19—H19 0.9500
N5—C15 1.314 (2) C20—C21 1.509 (2)
N6—C14 1.374 (2) C20—H20A 0.9900
N6—C15 1.378 (2) C20—H20B 0.9900
N6—C20 1.461 (2) C21—C26 1.382 (3)
C2—C3 1.447 (2) C21—C22 1.390 (2)
C3—C4 1.349 (3) C22—C23 1.386 (3)
C4—C5 1.425 (3) C22—H22 0.9500
C4—H4 0.9500 C23—C24 1.375 (3)
C5—C6 1.340 (3) C23—H23 0.9500
C5—H5 0.9500 C24—C25 1.377 (3)
C6—H6 0.9500 C24—H24 0.9500
C7—C8 1.514 (2) C25—C26 1.394 (3)
C7—H7A 0.9900 C25—H25 0.9500
C7—H7B 0.9900 C26—H26 0.9500
C6—O1—C3 106.50 (14) C12—C11—H11 120.1
C19—O2—C16 106.33 (14) C10—C11—H11 120.1
H3A—O3—H3B 108 (2) C11—C12—C13 120.22 (18)
C1—N1—N2 114.05 (14) C11—C12—H12 119.9
C1—N1—H1A 126.0 (13) C13—C12—H12 119.9
N2—N1—H1A 118.8 (13) C12—C13—C8 120.44 (19)
C2—N2—N1 103.59 (14) C12—C13—H13 119.8
C1—N3—C2 107.51 (14) C8—C13—H13 119.8
C1—N3—C7 124.11 (14) N4—C14—N6 104.29 (14)
C2—N3—C7 128.16 (14) N4—C14—S2 128.50 (13)
C14—N4—N5 113.20 (14) N6—C14—S2 127.21 (13)
C14—N4—H4A 126.2 (13) N5—C15—N6 110.73 (15)
N5—N4—H4A 120.5 (13) N5—C15—C16 123.67 (15)
C15—N5—N4 104.25 (14) N6—C15—C16 125.58 (15)
C14—N6—C15 107.53 (14) C17—C16—O2 109.93 (15)
C14—N6—C20 124.07 (14) C17—C16—C15 135.42 (16)
C15—N6—C20 128.21 (14) O2—C16—C15 114.60 (14)
N1—C1—N3 103.46 (14) C16—C17—C18 106.48 (17)
N1—C1—S1 128.34 (13) C16—C17—H17 126.8
N3—C1—S1 128.17 (13) C18—C17—H17 126.8
N2—C2—N3 111.36 (15) C19—C18—C17 106.48 (16)
N2—C2—C3 122.82 (15) C19—C18—H18 126.8
N3—C2—C3 125.81 (15) C17—C18—H18 126.8
C4—C3—O1 109.95 (15) C18—C19—O2 110.79 (16)
C4—C3—C2 135.93 (17) C18—C19—H19 124.6
O1—C3—C2 114.11 (15) O2—C19—H19 124.6
C3—C4—C5 106.47 (17) N6—C20—C21 114.33 (14)
C3—C4—H4 126.8 N6—C20—H20A 108.7
C5—C4—H4 126.8 C21—C20—H20A 108.7
C6—C5—C4 106.89 (17) N6—C20—H20B 108.7
C6—C5—H5 126.6 C21—C20—H20B 108.7
C4—C5—H5 126.6 H20A—C20—H20B 107.6
C5—C6—O1 110.20 (16) C26—C21—C22 119.00 (17)
C5—C6—H6 124.9 C26—C21—C20 122.02 (15)
O1—C6—H6 124.9 C22—C21—C20 118.90 (16)
N3—C7—C8 114.60 (14) C23—C22—C21 120.24 (19)
N3—C7—H7A 108.6 C23—C22—H22 119.9
C8—C7—H7A 108.6 C21—C22—H22 119.9
N3—C7—H7B 108.6 C24—C23—C22 120.41 (19)
C8—C7—H7B 108.6 C24—C23—H23 119.8
H7A—C7—H7B 107.6 C22—C23—H23 119.8
C9—C8—C13 118.95 (17) C23—C24—C25 119.95 (19)
C9—C8—C7 122.93 (15) C23—C24—H24 120.0
C13—C8—C7 118.12 (16) C25—C24—H24 120.0
C8—C9—C10 120.53 (17) C24—C25—C26 119.9 (2)
C8—C9—H9 119.7 C24—C25—H25 120.1
C10—C9—H9 119.7 C26—C25—H25 120.1
C11—C10—C9 120.12 (19) C21—C26—C25 120.52 (18)
C11—C10—H10 119.9 C21—C26—H26 119.7
C9—C10—H10 119.9 C25—C26—H26 119.7
C12—C11—C10 119.73 (18)
C1—N1—N2—C2 1.32 (19) C7—C8—C13—C12 179.87 (18)
C14—N4—N5—C15 −0.33 (19) N5—N4—C14—N6 0.32 (19)
N2—N1—C1—N3 −1.84 (19) N5—N4—C14—S2 −179.83 (13)
N2—N1—C1—S1 176.30 (13) C15—N6—C14—N4 −0.18 (18)
C2—N3—C1—N1 1.59 (18) C20—N6—C14—N4 −175.62 (14)
C7—N3—C1—N1 176.47 (14) C15—N6—C14—S2 179.97 (13)
C2—N3—C1—S1 −176.56 (13) C20—N6—C14—S2 4.5 (2)
C7—N3—C1—S1 −1.7 (2) N4—N5—C15—N6 0.20 (19)
N1—N2—C2—N3 −0.20 (19) N4—N5—C15—C16 −178.34 (16)
N1—N2—C2—C3 −179.37 (16) C14—N6—C15—N5 −0.02 (19)
C1—N3—C2—N2 −0.90 (19) C20—N6—C15—N5 175.17 (15)
C7—N3—C2—N2 −175.50 (15) C14—N6—C15—C16 178.48 (16)
C1—N3—C2—C3 178.23 (16) C20—N6—C15—C16 −6.3 (3)
C7—N3—C2—C3 3.6 (3) C19—O2—C16—C17 0.2 (2)
C6—O1—C3—C4 0.6 (2) C19—O2—C16—C15 177.89 (15)
C6—O1—C3—C2 −179.92 (15) N5—C15—C16—C17 159.8 (2)
N2—C2—C3—C4 −175.6 (2) N6—C15—C16—C17 −18.5 (3)
N3—C2—C3—C4 5.4 (3) N5—C15—C16—O2 −17.1 (2)
N2—C2—C3—O1 5.1 (2) N6—C15—C16—O2 164.55 (16)
N3—C2—C3—O1 −173.93 (15) O2—C16—C17—C18 −0.2 (2)
O1—C3—C4—C5 −0.4 (2) C15—C16—C17—C18 −177.2 (2)
C2—C3—C4—C5 −179.8 (2) C16—C17—C18—C19 0.1 (2)
C3—C4—C5—C6 0.1 (2) C17—C18—C19—O2 0.0 (2)
C4—C5—C6—O1 0.3 (2) C16—O2—C19—C18 −0.1 (2)
C3—O1—C6—C5 −0.5 (2) C14—N6—C20—C21 −98.91 (19)
C1—N3—C7—C8 111.39 (18) C15—N6—C20—C21 86.6 (2)
C2—N3—C7—C8 −74.8 (2) N6—C20—C21—C26 25.8 (2)
N3—C7—C8—C9 −13.9 (2) N6—C20—C21—C22 −157.33 (16)
N3—C7—C8—C13 166.36 (16) C26—C21—C22—C23 0.8 (3)
C13—C8—C9—C10 −0.3 (3) C20—C21—C22—C23 −176.17 (16)
C7—C8—C9—C10 180.00 (17) C21—C22—C23—C24 −0.3 (3)
C8—C9—C10—C11 0.0 (3) C22—C23—C24—C25 −0.2 (3)
C9—C10—C11—C12 0.4 (3) C23—C24—C25—C26 0.2 (3)
C10—C11—C12—C13 −0.5 (3) C22—C21—C26—C25 −0.7 (3)
C11—C12—C13—C8 0.3 (3) C20—C21—C26—C25 176.14 (17)
C9—C8—C13—C12 0.1 (3) C24—C25—C26—C21 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N5i 0.85 (2) 2.08 (2) 2.906 (2) 165 (2)
N1—H1A···S2ii 0.88 (2) 2.47 (2) 3.267 (2) 151 (2)
N4—H4A···O3iii 0.89 (2) 1.81 (2) 2.697 (2) 174 (2)
C7—H7A···N2iv 0.99 2.60 3.304 (3) 128
C7—H7B···O1iv 0.99 2.59 3.440 (2) 144
O3—H3B···S1 0.85 (2) 2.50 (2) 3.320 (2) 162 (2)
C7—H7A···S1 0.99 2.74 3.237 (2) 112
C9—H9···N3 0.95 2.56 2.893 (2) 101
C26—H26···N6 0.95 2.58 2.903 (3) 100
C20—H20B···S2 0.99 2.78 3.214 (2) 107

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z; (iii) x−1, y+1, z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2207).

References

  1. Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682. [DOI] [PubMed]
  2. Altman, A. & Solomost, T. (1993). Hortic. Sci.28, 201–203.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  4. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  5. Chai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkivoc.ii, 141–145.
  6. Dege, N., Andac, O., Cansız, A., Çetin, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1405–o1407.
  7. Etter, M. C. (1990). Acc. Chem. Res 23, 120–126.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Hashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull.38, 2532–2536. [DOI] [PubMed]
  10. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Kanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol.8, 644–673. [DOI] [PMC free article] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o425–o427.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Yıldırım, S. Ö., Akkurt, M., Koparır, M., Cansız, A., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o2368–o2370.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012361/rz2207sup1.cif

e-64-0o952-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012361/rz2207Isup2.hkl

e-64-0o952-Isup2.hkl (275.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES