Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1045–o1046. doi: 10.1107/S1600536808013263

Propane-1,2-diammonium bis­(6-carboxy­pyridine-2-carboxyl­ate) dihydrate

Hossein Aghabozorg a,*, Mohammad Heidari a, Mohammad Ghadermazi b, Jafar Attar Gharamaleki a
PMCID: PMC2961371  PMID: 21202565

Abstract

The reaction of propane-1,2-diamine (pn) and pyridine-2,6-dicarboxylic acid (pydcH2) in a 1:2 molar ratio in aqueous solution resulted in the formation of the title compound, C3H12N2 2+·2C7H4NO4·2H2O or (pnH2)(pydcH)2·2H2O. The structure contains two monoanionic deprotonated forms of pyridine-2,6-dicarboxylic acid molecules (pydcH), a diprotonated propane-1,2-diamine (pnH2)2+, and two water mol­ecules. A significant π–π stacking inter­action is observed between the pyridyl rings of the (pydcH) fragments, with a face-to-face distance of 3.6194 (9) Å. In the crystal structure, a wide range of non-covalent inter­actions consisting of ion pairing, hydrogen bonding [of the types of O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O, with DA distances in the range 2.454 (2)–3.222 (2)Å] and π–π stacking inter­actions [centroid–centroid distance = 3.6194 (9) Å] connect the components into a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2007, 2008); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006).graphic file with name e-64-o1045-scheme1.jpg

Experimental

Crystal data

  • C3H12N2 2+·2C7H4NO4 ·2H2O

  • M r = 444.40

  • Triclinic, Inline graphic

  • a = 7.5587 (3) Å

  • b = 11.0388 (5) Å

  • c = 12.5821 (6) Å

  • α = 98.533 (1)°

  • β = 99.844 (1)°

  • γ = 106.410 (1)°

  • V = 970.52 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 (2) K

  • 0.11 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.984, T max = 0.993

  • 10335 measured reflections

  • 4242 independent reflections

  • 3220 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 1.04

  • 4242 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013263/om2231sup1.cif

e-64-o1045-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013263/om2231Isup2.hkl

e-64-o1045-Isup2.hkl (207.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O8i 0.87 1.61 2.479 (2) 175
O1W—H1A⋯O7ii 0.87 1.78 2.649 (2) 177
O1W—H1B⋯O2Wiii 0.87 1.90 2.751 (2) 166
O2W—H2A⋯O4iii 0.87 2.00 2.855 (2) 169
O2W—H2B⋯O4 0.87 1.94 2.776 (2) 160
N3—H3B⋯N1iv 0.91 2.16 2.971 (2) 149
N3—H3C⋯O6v 0.91 1.92 2.819 (2) 172
N3—H3D⋯O1Wiii 0.91 1.88 2.790 (2) 176
N4—H4B⋯O1Wv 0.91 1.97 2.854 (2) 163
N4—H4C⋯N2vi 0.91 2.13 3.017 (2) 166
N4—H4D⋯O2vii 0.91 2.01 2.884 (2) 160
O5—H5⋯O3viii 0.87 1.59 2.454 (2) 178
C16—H16A⋯O5vi 1.00 2.54 3.182 (2) 122
C16—H16A⋯O6v 1.00 2.58 3.222 (2) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

supplementary crystallographic information

Comment

Recently, we have defined a plan to prepare water soluble proton-transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylic acid, btcH4, to propane-1,3-diamine (tn) and 1,10-phenanthroline, (phen). These resulted in the formation of some novel proton transfer compounds such as (pnH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi, Ramezanipour, 2006), (pnH2)2(btc).2H2O (Aghabozorg, et al., 2007) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi, Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, et al., 2008).

The molecular structure of the title compound is shown in Fig. 1. The crystal structure shows that a single proton from each of the carboxyl groups was transferred to the propane-1,2-diamine molecule (pn), rendering it a dication. Thus, the negative charges of two monoanionic 6-carboxypyridine-2-carboxylate groups, (pydcH)-, are neutralized by a doubly protonated propane-1,2-diammonium, (pnH2)2+, fragment.

An alternating π-π stacking interaction exits between the two aromatic rings of (pydcH)- with centroid-centroid distance of 3.6194 (9) Å [-x, 1 - y, 1 - z] (Fig. 2).

The C–O distances for this compound support the existence of both ionic and non-ionic acid moieties. The long bond distances of C6–O1 [1.2982 (19) Å] and C13–O5 [1.2936 (19) Å] imply the presence of neutral form of carboxylic acids, whereas the relatively short bond distances of C6–O2 [1.2239 (19) Å] and C13–O6 [1.2260 (19) Å] confirm the presence of double bonds.

A number of O—H···O, N—H···O, N–H···N and C—H···O hydrogen bonds, with D···A distances ranging from 2.454 (2) to 3.222 (2) Å, are observed in the crystal structure of the title compound (Table 1). The shortest hydrogen bond is O5—H5···O3viii (x - 1, y - 1, z) with D···A = 2.454 (2) Å, a strong interaction. Water molecules in this structure increase the number of hydrogen bonding interactions. Ion pairing, π-π stacking and van der Waals interactions are also effective in the packing of the crystal structure. These interactions result in the formation of a supramolecular structure (Fig. 3).

Experimental

Solutions of propane-1,2-diamine (40 mg, 1 mmol) in THF (10 ml) and pyridine-2,6-dicarboxylic acid (360 mg, 2 mmol) in H2O (10 ml) were added to each other in a 1:2 molar ratio, and the reaction mixture was heated at about 40°C for 2 h. Yellow crystals of the title compound were obtained from the solution after three weeks at room temperature.

Refinement

The hydrogen atoms of NH3 and OH groups, and also H atoms of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. All H(N) and H(O) atoms were refined in isotropic approximation in rigid model, the H(C) atoms were refined in isotropic approximatiom in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Xi) for OH, CH and CH2 gropus and 1.5 Ueq(Xii) for NH3 and CH3 group, where U(Xi) and U(Ni) are respectively the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of π-π stacking interactions between the two aromatic rings of (pydcH)- fragments with centroid-centroid distance of 3.6194 (9) Å [-x, 1 -y, 1 -z].

Fig. 3.

Fig. 3.

The crystal packing of the title compound with hydrogen bonds shown as dashed lines as viewed approximately down a.

Crystal data

C3H12N22+·2C7H4NO4·2(H2O) Z = 2
Mr = 444.40 F000 = 468
Triclinic, P1 Dx = 1.521 Mg m3
a = 7.5587 (3) Å Mo Kα radiation λ = 0.71073 Å
b = 11.0388 (5) Å Cell parameters from 2295 reflections
c = 12.5821 (6) Å θ = 3–27º
α = 98.533 (1)º µ = 0.13 mm1
β = 99.844 (1)º T = 100 (2) K
γ = 106.410 (1)º Prism, light yellow
V = 970.52 (7) Å3 0.11 × 0.10 × 0.06 mm

Data collection

Bruker SMART APEXII diffractometer 4242 independent reflections
Radiation source: fine-focus sealed tube 3220 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 100(2) K θmax = 27.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.984, Tmax = 0.993 k = −14→14
10335 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.104   w = 1/[σ2(Fo2) + (0.05P)2 + 0.22P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4242 reflections Δρmax = 0.36 e Å3
280 parameters Δρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.30330 (16) 0.96417 (11) 0.10525 (9) 0.0158 (3)
H1 0.2728 1.0122 0.0610 0.019*
O2 0.12513 (17) 0.79720 (11) −0.03137 (9) 0.0171 (3)
O3 0.62921 (18) 0.89335 (11) 0.43063 (10) 0.0234 (3)
O4 0.58090 (17) 0.69734 (11) 0.46855 (9) 0.0176 (3)
N1 0.38792 (19) 0.80055 (12) 0.23258 (11) 0.0117 (3)
C1 0.4249 (2) 0.71578 (15) 0.29333 (13) 0.0120 (3)
C2 0.3517 (2) 0.58307 (15) 0.25576 (13) 0.0139 (3)
H2C 0.3769 0.5267 0.3023 0.017*
C3 0.2419 (2) 0.53364 (16) 0.14993 (14) 0.0150 (3)
H3A 0.1918 0.4431 0.1220 0.018*
C4 0.2069 (2) 0.61941 (16) 0.08566 (14) 0.0145 (3)
H4A 0.1350 0.5888 0.0118 0.017*
C5 0.2784 (2) 0.75089 (15) 0.13067 (13) 0.0117 (3)
C6 0.2292 (2) 0.84218 (15) 0.06044 (13) 0.0126 (3)
C7 0.5543 (2) 0.77185 (15) 0.40738 (14) 0.0139 (3)
O5 −0.17333 (17) 0.01198 (11) 0.61266 (10) 0.0175 (3)
H5 −0.2412 −0.0312 0.5480 0.021*
O6 −0.18863 (17) 0.17699 (11) 0.53087 (9) 0.0180 (3)
O7 0.41198 (17) 0.28482 (12) 1.04946 (10) 0.0210 (3)
O8 0.20387 (17) 0.08880 (11) 0.97111 (9) 0.0171 (3)
N2 0.08176 (19) 0.17610 (13) 0.79041 (11) 0.0114 (3)
C8 0.0191 (2) 0.22487 (15) 0.70500 (13) 0.0121 (3)
C9 0.0797 (2) 0.35514 (16) 0.70194 (13) 0.0138 (3)
H9A 0.0317 0.3853 0.6397 0.017*
C10 0.2115 (2) 0.44020 (16) 0.79162 (14) 0.0154 (4)
H10A 0.2559 0.5299 0.7923 0.019*
C11 0.2769 (2) 0.39153 (16) 0.87986 (13) 0.0139 (3)
H11A 0.3670 0.4478 0.9425 0.017*
C12 0.2104 (2) 0.26003 (15) 0.87667 (13) 0.0111 (3)
C13 −0.1263 (2) 0.13271 (15) 0.60740 (13) 0.0130 (3)
C14 0.2828 (2) 0.20755 (15) 0.97451 (13) 0.0132 (3)
N3 0.41675 (19) 0.91821 (13) 0.68441 (11) 0.0129 (3)
H3B 0.5070 0.9960 0.6940 0.019*
H3C 0.3499 0.8938 0.6132 0.019*
H3D 0.4730 0.8583 0.7004 0.019*
C15 0.2867 (2) 0.92892 (17) 0.75906 (14) 0.0180 (4)
H15A 0.2953 1.0207 0.7806 0.022*
H15B 0.3282 0.8996 0.8269 0.022*
C16 0.0823 (2) 0.85019 (15) 0.70690 (14) 0.0145 (3)
H16A 0.0451 0.8752 0.6352 0.017*
C17 0.0413 (3) 0.70574 (17) 0.68557 (16) 0.0230 (4)
H17A −0.0931 0.6631 0.6510 0.034*
H17B 0.0719 0.6791 0.7555 0.034*
H17C 0.1184 0.6812 0.6363 0.034*
N4 −0.03197 (19) 0.88970 (13) 0.78355 (11) 0.0130 (3)
H4B −0.1564 0.8435 0.7566 0.019*
H4C −0.0168 0.9754 0.7894 0.019*
H4D 0.0078 0.8743 0.8512 0.019*
O1W 0.41860 (16) 0.26610 (11) 0.25748 (9) 0.0162 (3)
H1B 0.4897 0.3358 0.3049 0.019*
H1A 0.4198 0.2719 0.1894 0.019*
O2W 0.33952 (17) 0.54108 (12) 0.57226 (10) 0.0204 (3)
H2B 0.3933 0.5814 0.5260 0.024*
H2A 0.3485 0.4636 0.5598 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0200 (6) 0.0109 (6) 0.0138 (6) 0.0032 (5) −0.0022 (5) 0.0045 (5)
O2 0.0199 (6) 0.0167 (6) 0.0112 (6) 0.0044 (5) −0.0032 (5) 0.0026 (5)
O3 0.0325 (8) 0.0109 (6) 0.0166 (6) 0.0008 (5) −0.0103 (6) 0.0018 (5)
O4 0.0226 (7) 0.0144 (6) 0.0135 (6) 0.0041 (5) −0.0012 (5) 0.0055 (5)
N1 0.0114 (7) 0.0118 (7) 0.0106 (6) 0.0026 (5) 0.0014 (5) 0.0020 (5)
C1 0.0105 (8) 0.0130 (8) 0.0126 (8) 0.0033 (6) 0.0029 (6) 0.0030 (6)
C2 0.0152 (8) 0.0120 (8) 0.0155 (8) 0.0053 (6) 0.0027 (7) 0.0049 (6)
C3 0.0156 (8) 0.0108 (8) 0.0170 (8) 0.0032 (6) 0.0030 (7) 0.0005 (6)
C4 0.0133 (8) 0.0151 (8) 0.0125 (8) 0.0040 (7) 0.0001 (6) −0.0002 (6)
C5 0.0092 (7) 0.0131 (8) 0.0125 (8) 0.0029 (6) 0.0024 (6) 0.0028 (6)
C6 0.0102 (8) 0.0153 (8) 0.0120 (8) 0.0030 (6) 0.0030 (6) 0.0029 (6)
C7 0.0156 (8) 0.0120 (8) 0.0139 (8) 0.0047 (6) 0.0024 (7) 0.0025 (6)
O5 0.0208 (6) 0.0129 (6) 0.0130 (6) 0.0027 (5) −0.0052 (5) 0.0006 (5)
O6 0.0221 (7) 0.0159 (6) 0.0121 (6) 0.0045 (5) −0.0040 (5) 0.0030 (5)
O7 0.0225 (7) 0.0188 (7) 0.0135 (6) −0.0003 (5) −0.0056 (5) 0.0032 (5)
O8 0.0211 (6) 0.0132 (6) 0.0144 (6) 0.0040 (5) −0.0017 (5) 0.0042 (5)
N2 0.0108 (7) 0.0140 (7) 0.0094 (6) 0.0042 (5) 0.0017 (5) 0.0020 (5)
C8 0.0110 (8) 0.0145 (8) 0.0106 (8) 0.0045 (6) 0.0023 (6) 0.0015 (6)
C9 0.0138 (8) 0.0164 (9) 0.0128 (8) 0.0052 (7) 0.0035 (6) 0.0058 (6)
C10 0.0156 (8) 0.0123 (8) 0.0184 (9) 0.0035 (7) 0.0041 (7) 0.0046 (6)
C11 0.0111 (8) 0.0142 (8) 0.0133 (8) 0.0016 (6) 0.0011 (6) −0.0001 (6)
C12 0.0096 (7) 0.0125 (8) 0.0110 (8) 0.0031 (6) 0.0033 (6) 0.0014 (6)
C13 0.0137 (8) 0.0140 (8) 0.0118 (8) 0.0053 (6) 0.0027 (6) 0.0027 (6)
C14 0.0144 (8) 0.0132 (8) 0.0128 (8) 0.0054 (7) 0.0035 (7) 0.0024 (6)
N3 0.0131 (7) 0.0123 (7) 0.0127 (7) 0.0035 (5) 0.0014 (6) 0.0032 (5)
C15 0.0154 (9) 0.0192 (9) 0.0162 (8) 0.0026 (7) 0.0038 (7) −0.0004 (7)
C16 0.0136 (8) 0.0149 (8) 0.0144 (8) 0.0044 (7) 0.0029 (7) 0.0013 (6)
C17 0.0234 (10) 0.0160 (9) 0.0278 (10) 0.0036 (7) 0.0090 (8) 0.0007 (7)
N4 0.0129 (7) 0.0123 (7) 0.0121 (7) 0.0033 (5) 0.0003 (5) 0.0019 (5)
O1W 0.0175 (6) 0.0152 (6) 0.0134 (6) 0.0030 (5) 0.0006 (5) 0.0027 (5)
O2W 0.0261 (7) 0.0168 (6) 0.0190 (6) 0.0065 (5) 0.0062 (5) 0.0051 (5)

Geometric parameters (Å, °)

O1—C6 1.2982 (19) C9—H9A 0.9500
O1—H1 0.8700 C10—C11 1.380 (2)
O2—C6 1.2239 (19) C10—H10A 0.9500
O3—C7 1.266 (2) C11—C12 1.387 (2)
O4—C7 1.240 (2) C11—H11A 0.9500
N1—C5 1.343 (2) C12—C14 1.520 (2)
N1—C1 1.351 (2) N3—C15 1.487 (2)
C1—C2 1.387 (2) N3—H3B 0.9100
C1—C7 1.521 (2) N3—H3C 0.9100
C2—C3 1.382 (2) N3—H3D 0.9100
C2—H2C 0.9500 C15—C16 1.516 (2)
C3—C4 1.384 (2) C15—H15A 0.9900
C3—H3A 0.9500 C15—H15B 0.9900
C4—C5 1.388 (2) C16—N4 1.496 (2)
C4—H4A 0.9500 C16—C17 1.509 (2)
C5—C6 1.516 (2) C16—H16A 1.0000
O5—C13 1.2936 (19) C17—H17A 0.9800
O5—H5 0.8701 C17—H17B 0.9800
O6—C13 1.2260 (19) C17—H17C 0.9800
O7—C14 1.244 (2) N4—H4B 0.9100
O8—C14 1.2684 (19) N4—H4C 0.9100
N2—C8 1.346 (2) N4—H4D 0.9100
N2—C12 1.347 (2) O1W—H1B 0.8700
C8—C9 1.389 (2) O1W—H1A 0.8699
C8—C13 1.512 (2) O2W—H2B 0.8700
C9—C10 1.386 (2) O2W—H2A 0.8700
C6—O1—H1 111.7 C11—C12—C14 119.22 (14)
C5—N1—C1 116.90 (13) O6—C13—O5 125.65 (15)
N1—C1—C2 122.99 (15) O6—C13—C8 118.45 (14)
N1—C1—C7 117.01 (14) O5—C13—C8 115.90 (14)
C2—C1—C7 119.99 (14) O7—C14—O8 126.73 (15)
C3—C2—C1 119.31 (15) O7—C14—C12 117.09 (14)
C3—C2—H2C 120.3 O8—C14—C12 116.18 (14)
C1—C2—H2C 120.3 C15—N3—H3B 109.5
C2—C3—C4 118.32 (15) C15—N3—H3C 109.5
C2—C3—H3A 120.8 H3B—N3—H3C 109.5
C4—C3—H3A 120.8 C15—N3—H3D 109.5
C3—C4—C5 119.02 (15) H3B—N3—H3D 109.5
C3—C4—H4A 120.5 H3C—N3—H3D 109.5
C5—C4—H4A 120.5 N3—C15—C16 112.99 (14)
N1—C5—C4 123.36 (15) N3—C15—H15A 109.0
N1—C5—C6 118.79 (14) C16—C15—H15A 109.0
C4—C5—C6 117.85 (14) N3—C15—H15B 109.0
O2—C6—O1 125.56 (15) C16—C15—H15B 109.0
O2—C6—C5 119.01 (14) H15A—C15—H15B 107.8
O1—C6—C5 115.43 (13) N4—C16—C17 110.23 (14)
O4—C7—O3 125.45 (15) N4—C16—C15 106.01 (13)
O4—C7—C1 118.87 (14) C17—C16—C15 115.19 (15)
O3—C7—C1 115.66 (14) N4—C16—H16A 108.4
C13—O5—H5 106.7 C17—C16—H16A 108.4
C8—N2—C12 117.06 (14) C15—C16—H16A 108.4
N2—C8—C9 123.62 (15) C16—C17—H17A 109.5
N2—C8—C13 118.08 (14) C16—C17—H17B 109.5
C9—C8—C13 118.30 (14) H17A—C17—H17B 109.5
C10—C9—C8 118.53 (15) C16—C17—H17C 109.5
C10—C9—H9A 120.7 H17A—C17—H17C 109.5
C8—C9—H9A 120.7 H17B—C17—H17C 109.5
C11—C10—C9 118.47 (15) C16—N4—H4B 109.5
C11—C10—H10A 120.8 C16—N4—H4C 109.5
C9—C10—H10A 120.8 H4B—N4—H4C 109.5
C10—C11—C12 119.66 (15) C16—N4—H4D 109.5
C10—C11—H11A 120.2 H4B—N4—H4D 109.5
C12—C11—H11A 120.2 H4C—N4—H4D 109.5
N2—C12—C11 122.65 (15) H1B—O1W—H1A 113.3
N2—C12—C14 118.13 (14) H2B—O2W—H2A 106.8
C5—N1—C1—C2 −1.5 (2) C12—N2—C8—C13 −179.63 (14)
C5—N1—C1—C7 178.02 (14) N2—C8—C9—C10 −0.2 (2)
N1—C1—C2—C3 2.7 (3) C13—C8—C9—C10 179.40 (15)
C7—C1—C2—C3 −176.84 (15) C8—C9—C10—C11 0.1 (2)
C1—C2—C3—C4 −0.9 (2) C9—C10—C11—C12 0.2 (2)
C2—C3—C4—C5 −1.8 (2) C8—N2—C12—C11 0.4 (2)
C1—N1—C5—C4 −1.4 (2) C8—N2—C12—C14 179.70 (14)
C1—N1—C5—C6 178.54 (14) C10—C11—C12—N2 −0.5 (2)
C3—C4—C5—N1 3.1 (3) C10—C11—C12—C14 −179.77 (15)
C3—C4—C5—C6 −176.86 (15) N2—C8—C13—O6 177.64 (15)
N1—C5—C6—O2 −178.03 (15) C9—C8—C13—O6 −2.0 (2)
C4—C5—C6—O2 1.9 (2) N2—C8—C13—O5 −2.6 (2)
N1—C5—C6—O1 1.7 (2) C9—C8—C13—O5 177.79 (14)
C4—C5—C6—O1 −178.34 (14) N2—C12—C14—O7 174.56 (15)
N1—C1—C7—O4 175.02 (15) C11—C12—C14—O7 −6.1 (2)
C2—C1—C7—O4 −5.4 (2) N2—C12—C14—O8 −5.7 (2)
N1—C1—C7—O3 −6.2 (2) C11—C12—C14—O8 173.67 (15)
C2—C1—C7—O3 173.32 (15) N3—C15—C16—N4 −170.15 (13)
C12—N2—C8—C9 −0.1 (2) N3—C15—C16—C17 67.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O8i 0.87 1.61 2.479 (2) 175
O1W—H1A···O7ii 0.87 1.78 2.649 (2) 177
O1W—H1B···O2Wiii 0.87 1.90 2.751 (2) 166
O2W—H2A···O4iii 0.87 2.00 2.855 (2) 169
O2W—H2B···O4 0.87 1.94 2.776 (2) 160
N3—H3B···N1iv 0.91 2.16 2.971 (2) 149
N3—H3C···O6v 0.91 1.92 2.819 (2) 172
N3—H3D···O1Wiii 0.91 1.88 2.790 (2) 176
N4—H4B···O1Wv 0.91 1.97 2.854 (2) 163
N4—H4C···N2vi 0.91 2.13 3.017 (2) 166
N4—H4D···O2vii 0.91 2.01 2.884 (2) 160
O5—H5···O3viii 0.87 1.59 2.454 (2) 178
C16—H16A···O5vi 1.00 2.54 3.182 (2) 122
C16—H16A···O6v 1.00 2.58 3.222 (2) 122

Symmetry codes: (i) x, y+1, z−1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+1; (v) −x, −y+1, −z+1; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2231).

References

  1. Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.
  2. Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.
  3. Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.
  4. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. In the press.
  5. Bruker (2007). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013263/om2231sup1.cif

e-64-o1045-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013263/om2231Isup2.hkl

e-64-o1045-Isup2.hkl (207.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES