Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 24;64(Pt 6):o1142. doi: 10.1107/S1600536808008313

(S)-2-(Pyrrolidinium-2-ylmethyl­sulfan­yl)pyridinium dibromide

Shuai Zhang a, Yifeng Wang a, Aibao Xia a, Shuping Luo a,*
PMCID: PMC2961376  PMID: 21202651

Abstract

In the title compound, C10H16N2S2+·2Br, the pyrrolidine ring displays an envelope conformation, with the flap C atom lying 0.484 (5) Å out of the plane of the rest of the pyrrolidine ring. The thio­ether group connects the pyridine ring and the 2-methyl­pyrrolidine group. Both pyrrolidine NH bonds form hydrogen bonds to the bromide anions. These hydrogen bonds link the cations and anions in a helical chain along the c axis.

Related literature

For related literature, see: Ishii et al. (2004); Xu et al. (2007); Larson (1970).graphic file with name e-64-o1142-scheme1.jpg

Experimental

Crystal data

  • C10H16N2S2+·2Br

  • M r = 356.12

  • Trigonal, Inline graphic

  • a = 8.9892 (9) Å

  • c = 15.4567 (14) Å

  • V = 1081.66 (18) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 5.76 mm−1

  • T = 296 (1) K

  • 0.35 × 0.30 × 0.23 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi,1995) T min = 0.162, T max = 0.266

  • 10585 measured reflections

  • 3169 independent reflections

  • 1902 reflections with F 2 > 2.0σ(F 2)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.108

  • S = 1.01

  • 3169 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983), 1037 Friedel pairs

  • Flack parameter: 0.017 (2)

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008313/pk2087sup1.cif

e-64-o1142-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008313/pk2087Isup2.hkl

e-64-o1142-Isup2.hkl (173.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯Br1 0.86 2.45 3.278 (7) 163
N1—H3⋯Br1i 0.86 2.43 3.271 (5) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Professor Jian-Ming Gu of Zhejiang University for his help.

supplementary crystallographic information

Comment

In recent years, proline and its derivatives have been studied extensively because of their ability to catalyze a large number of reactions (Ishii et al., 2004). The title compound is a hydrobromide of an ionic compound that was synthesized from L-proline. It was prepared as a kind of ionic organocatalyst for use in the asymmetric Michael addition of carbonyl compounds to nitroalkenes (Xu et al., 2007). The compound consists of two ionic pairs, protonated ammoniums and Br- anions. The chiral atom C1 has the expected S conformation, and the C1/C3/C4/N1 atoms of pyrrolidine are almost coplanar. The distance of atom C2 to the C1/C3/C4/N1 mean plane is 0.484 (5) Å, while the distance of atom C5 to the plane is 0.865 (9) Å. In addition, the dihedral angle of the C1/N1/C3/C4 mean plane and the pyridine ring is 67.82 (4) °. The thioether group connects the pyridine ring and the 2-methylpyrrolidine group, the torsion angle of C6—S1—C5—C1 is 97.13 (4) °.

Experimental

The title compound was readily synthesized by treating 2-mercaptopyridine with (S)-(+)-2-bromomethylpyrrolidine hydrobromide in MeCN. The compound (S)-(+)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available L-proline by reduction with NaBH4 and subsequent bromination with PBr3. Suitable crystals were obtained by slow evaporation of methanol at room temperature.

Refinement

All H atoms were placed in calculated positions with C—H=0.98 Å (sp), C—H=0.97 Å (sp2), C—H=0.93 Å (aromatic), N—H=0.86 Å and included in the final cycles of refinement as a riding model, with Uiso(H)=1.2Ueq of the carrier atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonding in the title compound. Symmetry codes: (i) 1-y, 1+x-y, -1/3+z; (ii) 1-y, 1+x-y, 2/3+z; (iii) -x+y, 1-x, 1/3+z.

Crystal data

C10H16N2S2+·2Br Z = 3
Mr = 356.12 F000 = 528.00
Trigonal, P32 Dx = 1.640 Mg m3
Hall symbol: P 32 Mo Kα radiation λ = 0.71073 Å
a = 8.9892 (9) Å Cell parameters from 5169 reflections
b = 8.9892 (9) Å θ = 3.7–27.4º
c = 15.4567 (14) Å µ = 5.76 mm1
α = 90º T = 296 (1) K
β = 90º Chunk, colorless
γ = 120º 0.35 × 0.30 × 0.23 mm
V = 1081.66 (18) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 1902 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.061
ω scans θmax = 27.4º
Absorption correction: multi-scan(ABSCOR; Higashi,1995) h = −11→11
Tmin = 0.162, Tmax = 0.266 k = −11→10
10585 measured reflections l = −18→20
3169 independent reflections

Refinement

Refinement on F2 (Δ/σ)max = 0.013
R[F2 > 2σ(F2)] = 0.036 Δρmax = 0.67 e Å3
wR(F2) = 0.108 Δρmin = −0.53 e Å3
S = 1.01 Extinction correction: Larson (1970) Crystallographic Computing eq. 22
3169 reflections Extinction coefficient: 385 (18)
138 parameters Absolute structure: Flack (1983), 1037 Friedel Pairs
H-atom parameters constrained Flack parameter: 0.017 (2)
  w = 1/[0.7600σ(Fo2)]/(4Fo2)

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.51453 (17) 0.87503 (13) 0.16904 (9) 0.1032 (4)
Br2 0.10004 (11) 0.14553 (10) 0.04190 (9) 0.0605 (2)
S1 0.0678 (3) 0.4733 (3) 0.31433 (12) 0.0671 (7)
N1 0.4515 (9) 0.5570 (8) 0.2963 (3) 0.067 (2)
N2 0.0359 (7) 0.6865 (8) 0.2110 (3) 0.053 (2)
C1 0.3184 (9) 0.4069 (9) 0.2462 (4) 0.053 (2)
C2 0.3905 (11) 0.2858 (11) 0.2388 (5) 0.071 (3)
C3 0.5771 (13) 0.4004 (16) 0.2379 (8) 0.086 (5)
C4 0.6121 (14) 0.5513 (18) 0.2933 (7) 0.077 (5)
C5 0.1434 (10) 0.3261 (10) 0.2879 (4) 0.059 (2)
C6 0.0388 (9) 0.5412 (9) 0.2143 (4) 0.050 (2)
C7 0.0160 (10) 0.4576 (10) 0.1352 (4) 0.059 (2)
C8 −0.0040 (10) 0.5283 (11) 0.0612 (4) 0.066 (2)
C9 −0.0037 (10) 0.6817 (12) 0.0635 (4) 0.067 (2)
C10 0.0138 (10) 0.7576 (11) 0.1396 (4) 0.062 (2)
H1 0.3105 0.4460 0.1880 0.064*
H2 0.4673 0.6511 0.2735 0.080*
H3 0.4187 0.5509 0.3491 0.080*
H7 0.0144 0.3534 0.1330 0.071*
H8 −0.0180 0.4724 0.0087 0.079*
H9 −0.0154 0.7310 0.0130 0.080*
H10 0.0108 0.8593 0.1432 0.074*
H21 0.3560 0.2085 0.2879 0.085*
H22 0.3522 0.2195 0.1857 0.085*
H31 0.6169 0.4377 0.1793 0.103*
H32 0.6343 0.3421 0.2614 0.103*
H41 0.6450 0.5369 0.3511 0.092*
H42 0.7033 0.6564 0.2682 0.092*
H51 0.1477 0.2708 0.3409 0.071*
H52 0.0614 0.2403 0.2484 0.071*
H201 0.0494 0.7403 0.2590 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1369 (10) 0.0925 (8) 0.0513 (4) 0.0357 (7) 0.0061 (5) 0.0034 (4)
Br2 0.0670 (6) 0.0510 (5) 0.0630 (4) 0.0292 (4) 0.0073 (4) 0.0054 (3)
S1 0.0848 (16) 0.0802 (16) 0.0554 (11) 0.0555 (14) 0.0125 (10) 0.0098 (10)
N1 0.072 (4) 0.063 (4) 0.053 (3) 0.026 (4) −0.001 (3) −0.006 (3)
N2 0.055 (4) 0.055 (4) 0.053 (3) 0.029 (3) 0.011 (2) 0.003 (2)
C1 0.052 (4) 0.046 (4) 0.058 (4) 0.022 (4) −0.001 (3) −0.001 (3)
C2 0.055 (5) 0.082 (6) 0.084 (5) 0.040 (5) 0.000 (4) −0.005 (4)
C3 0.070 (8) 0.088 (10) 0.090 (14) 0.032 (7) 0.004 (7) 0.000 (10)
C4 0.061 (7) 0.083 (14) 0.093 (10) 0.041 (9) −0.004 (6) −0.003 (10)
C5 0.051 (5) 0.063 (5) 0.065 (5) 0.030 (4) 0.011 (3) 0.009 (3)
C6 0.056 (5) 0.041 (4) 0.060 (4) 0.030 (4) 0.008 (3) −0.003 (3)
C7 0.075 (5) 0.056 (5) 0.055 (4) 0.040 (4) 0.002 (3) 0.002 (3)
C8 0.071 (6) 0.078 (6) 0.053 (4) 0.041 (5) 0.001 (3) 0.001 (4)
C9 0.077 (6) 0.082 (6) 0.053 (4) 0.049 (5) −0.002 (3) 0.002 (4)
C10 0.088 (6) 0.061 (5) 0.050 (4) 0.048 (5) 0.002 (3) 0.009 (3)

Geometric parameters (Å, °)

S1—C5 1.811 (11) N1—H3 0.860
S1—C6 1.729 (7) N2—H201 0.860
N1—C1 1.496 (8) C1—H1 0.980
N1—C4 1.471 (18) C2—H21 0.970
N2—C6 1.321 (12) C2—H22 0.970
N2—C10 1.339 (10) C3—H31 0.970
C1—C2 1.524 (16) C3—H32 0.970
C1—C5 1.508 (10) C4—H41 0.970
C2—C3 1.465 (12) C4—H42 0.970
C3—C4 1.499 (9) C5—H51 0.970
C6—C7 1.396 (9) C5—H52 0.970
C7—C8 1.363 (12) C7—H7 0.930
C8—C9 1.379 (16) C8—H8 0.930
C9—C10 1.329 (10) C9—H9 0.930
N1—H2 0.860 C10—H10 0.930
C5—S1—C6 103.5 (4) C1—C2—H22 110.8
C1—N1—C4 108.0 (8) C3—C2—H21 110.8
C6—N2—C10 125.8 (6) C3—C2—H22 110.8
N1—C1—C2 104.4 (7) H21—C2—H22 109.5
N1—C1—C5 112.6 (6) C2—C3—H31 110.3
C2—C1—C5 113.7 (6) C2—C3—H32 110.3
C1—C2—C3 104.2 (8) C4—C3—H31 110.3
C2—C3—C4 106.2 (11) C4—C3—H32 110.3
N1—C4—C3 106.5 (8) H31—C3—H32 109.5
S1—C5—C1 115.3 (6) N1—C4—H41 110.2
S1—C6—N2 117.7 (5) N1—C4—H42 110.2
S1—C6—C7 126.9 (7) C3—C4—H41 110.2
N2—C6—C7 115.4 (7) C3—C4—H42 110.2
C6—C7—C8 120.2 (9) H41—C4—H42 109.5
C7—C8—C9 120.7 (7) S1—C5—H51 108.0
C8—C9—C10 118.4 (8) S1—C5—H52 108.0
N2—C10—C9 119.5 (10) C1—C5—H51 108.0
C1—N1—H2 109.8 C1—C5—H52 108.0
C1—N1—H3 109.8 H51—C5—H52 109.5
C4—N1—H2 109.8 C6—C7—H7 119.9
C4—N1—H3 109.8 C8—C7—H7 119.9
H2—N1—H3 109.5 C7—C8—H8 119.7
C6—N2—H201 117.1 C9—C8—H8 119.7
C10—N2—H201 117.1 C8—C9—H9 120.8
N1—C1—H1 108.7 C10—C9—H9 120.8
C2—C1—H1 108.7 N2—C10—H10 120.2
C5—C1—H1 108.7 C9—C10—H10 120.2
C1—C2—H21 110.8
C5—S1—C6—N2 −159.4 (5) N1—C1—C5—S1 51.7 (8)
C5—S1—C6—C7 21.3 (8) C2—C1—C5—S1 170.2 (5)
C6—S1—C5—C1 66.8 (5) C5—C1—C2—C3 −153.7 (7)
C1—N1—C4—C3 2.2 (10) C1—C2—C3—C4 32.4 (11)
C4—N1—C1—C2 17.3 (7) C2—C3—C4—N1 −22.0 (12)
C4—N1—C1—C5 141.1 (8) S1—C6—C7—C8 −179.4 (6)
C6—N2—C10—C9 −1.5 (12) N2—C6—C7—C8 1.2 (11)
C10—N2—C6—S1 −179.6 (5) C6—C7—C8—C9 −0.6 (10)
C10—N2—C6—C7 −0.1 (9) C7—C8—C9—C10 −1.0 (12)
N1—C1—C2—C3 −30.6 (8) C8—C9—C10—N2 2.1 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H2···Br1 0.86 2.45 3.278 (7) 163
N1—H3···Br1i 0.86 2.43 3.271 (5) 165

Symmetry codes: (i) −x+y, −x+1, z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2087).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Ishii, T., Fujioka, S., Sekiguchi, Y. & Kotsuki, H. (2004). J. Am. Chem. Soc.126, 9558–9559. [DOI] [PubMed]
  7. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Xu, D. Q., Luo, S. P., Wang, Y. F. & Xu, Z. Y. (2007). Chem. Commun pp. 4393–4395. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008313/pk2087sup1.cif

e-64-o1142-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008313/pk2087Isup2.hkl

e-64-o1142-Isup2.hkl (173.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES