Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):i35. doi: 10.1107/S1600536808014359

Hexaaqua­dibromidoeuropium(III) bromide, [EuBr2(H2O)6]Br

Constantin Hoch a,*, Arndt Simon a
PMCID: PMC2961385  PMID: 21202437

Abstract

The title compound crystallizes with the GdCl3·6H2O structure type, exhibiting discrete [EuBr2(H2O)6]+ cations as the main building blocks, linked with isolated bromide anions via H⋯Br hydrogen bonds to form a complex framework. The Eu atom and one Br atom each lie on a twofold rotation axis.

Related literature

For related literature, see: Bärnighausen et al. (1965); Bell & Smith (1990); Burns & Peterson (1971); Demyanets et al. (1974); Duhlev et al. (1988); Graeber et al. (1966); Habenschuss & Spedding (1980); Junk et al. (1999); Kolitsch (2006); Marezio et al. (1961); Reuter et al. (1994); Tegenfeldt et al. (1979); Wickleder & Meyer (1995).

Experimental

Crystal data

  • [EuBr2(H2O)6]Br

  • M r = 499.79

  • Monoclinic, Inline graphic

  • a = 8.1672 (7) Å

  • b = 6.7538 (4) Å

  • c = 12.5451 (10) Å

  • β = 127.077 (5)°

  • V = 552.08 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 16.52 mm−1

  • T = 293 (2) K

  • 0.25 × 0.24 × 0.18 mm

Data collection

  • Stoe IPDSII diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] T min = 0.065, T max = 0.155

  • 10921 measured reflections

  • 1613 independent reflections

  • 1397 reflections with I > 2s(I)

  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.049

  • S = 1.11

  • 1613 reflections

  • 72 parameters

  • All H-atom parameters refined

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.10 e Å−3

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DRAWXTL (Finger et al., 2007); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014359/mg2051sup1.cif

e-64-00i35-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014359/mg2051Isup2.hkl

e-64-00i35-Isup2.hkl (79.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Eu1—Br1 2.9449 (5)
Eu1—O1 2.424 (3)
Eu1—O2 2.422 (3)
Eu1—O3 2.388 (3)
Br1—Eu1—O1 146.89 (8)
Br1—Eu1—O1i 76.21 (9)
Br1—Eu1—O2 77.33 (8)
Br1—Eu1—O2i 78.22 (8)
Br1—Eu1—O3 107.21 (9)
Br1—Eu1—O3i 143.18 (8)
Br1—Eu1—Br1i 84.41 (2)
O1—Eu1—O1i 132.3 (2)
O2—Eu1—O2i 146.8 (2)
O3—Eu1—O3i 84.5 (2)
O1—Eu1—O2 72.6 (1)
O1—Eu1—O2i 122.0 (1)
O1—Eu1—O3 75.8 (1)
O1—Eu1—O3i 69.3 (1)
O2—Eu1—O3 70.9 (1)
O2—Eu1—O3i 138.6 (1)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯Br2ii 0.83 (2) 2.53 (8) 3.343 (4) 168 (6)
O1—H12⋯Br1iii 0.83 (2) 2.52 (13) 3.333 (4) 165 (6)
O2—H21⋯Br1iv 0.82 (2) 2.49 (10) 3.307 (4) 172 (6)
O2—H22⋯Br2v 0.83 (2) 2.63 (11) 3.417 (4) 161 (6)
O3—H31⋯Br1vi 0.83 (2) 2.46 (8) 3.288 (4) 173 (6)
O3—H32⋯Br2 0.83 (2) 2.52 (11) 3.328 (5) 163 (6)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

[EuBr2(H2O)6]Br crystallizes in the monoclinic space group P2/c (No. 13) and is isotypic with the GdCl3.6H2O structure type (Marezio et al., 1961), like many chloride hexahydrates MCl3.6H2O with M = Y (Bell & Smith, 1990), Ce (Reuter et al., 1994), Nd (Habenschuss & Spedding, 1980), Sm - Tm (Graeber et al., 1966), Am, Bk (Burns & Peterson, 1971), and two bromide hexahydrates MBr3.6H2O (M = Pr, Dy, Junk et al., 1999).

The Eu atoms in [EuBr2(H2O)6]Br are coordinated by six water molecules and two bromine atoms forming a distorted square antiprism (Fig. 1). Hydrogen bonds H—Br connect the [EuBr2(H2O)6]+ cations with the Br- counter-anions to a network. The bromine atom Br1 belonging to the cationic complex is surrounded by four, the isolated bromine atom Br2 by six hydrogen bonds (Fig. 2). A view of the unit cell of [EuBr2(H2O)6]Br is given in Fig. 3.

The H—Br distances (2.46–2.63 Å) are in good agreement with those in other bromide hydrates (e.g. 2.38–2.54 Å in [Sc(H2O)5(OH)]Br2, Kolitsch, 2006; 2.32–2.80 Å in [Ca(H2O)6]2[CdBr6], Duhlev et al., 1988; 2.40–2.83 A in NaBr.2H2O, Tegenfeldt et al., 1979). The EuIII—O distances in [EuBr2(H2O)6]Br range from 2.39 to 2.42 Å and thus are very similar to those in EuCl3.3H2O (2.39–2.40 Å, Reuter et al., 1994), EuCl3.6H2O (2.39–2.43 Å, Graeber et al., 1966), or EuCl(OH)2 (2.35–2.44 Å, Demyanets et al., 1974). The same holds for the EuIII—Br distances in [EuBr2(H2O)6]Br (2.94 Å) which lie between those in Na3EuBr6 (2.83 Å, Wickleder & Meyer, 1995) and those in EuOBr (3.19 Å, Bärnighausen et al., 1965).

Experimental

Colourless single crystals of [EuBr2(H2O)6]Br were obtained by recrystallizing the commercially available product ("EuBr3.X H2O", Alfa Aesar, 99.99%) under argon from degassed aqueous HBr solution by slow cooling of a solution saturated at ca 60 °C to room temperature.

Refinement

The positions of all hydrogen atoms were identified from the difference Fourier map, close to their ideal positions. Their refinement was performed applying a DFIX command (Sheldrick, 2008), restricting the O—H bond lengths to 0.82 ± 0.02 Å.

Figures

Fig. 1.

Fig. 1.

View of the cationic [Eu(H2O)6Br2]+ unit in [Eu(H2O)6Br2]Br, with displacement ellipsoids drawn at the 90% propability level. H atoms are shown as black spheres of arbitrary radii. [Symmetry code: (i) -x, y, 1/2 - z.]

Fig. 2.

Fig. 2.

View of the H—Br contacts in [Eu(H2O)6Br(2)2]Br(1), left: four hydrogen bonds link Br1 to water molecules, right: six hydrogen bonds link Br2 to water molecules. All displacement ellipsoids are drawn at the 90% propability level. [Symmetry codes: (i) -x, y, 1/2 - z; (ii) -x, -y, -z; (iii) x, -y, 1/2 + z.]

Fig. 3.

Fig. 3.

View along (010) on the crystal structure of [Eu(H2O)6Br2]Br. Small black spheres represent H atoms, large black spheres represent Eu atoms, grey spheres represent Br atoms, light grey spheres represent O atoms. Grey polyhedra represent the coordination of H atoms around Br atoms.

Crystal data

[EuBr2(H2O)6]Br F000 = 456
Mr = 499.79 Dx = 3.006 Mg m3
Monoclinic, P2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 10367 reflections
a = 8.1672 (7) Å θ = 3.0–32.1º
b = 6.7538 (4) Å µ = 16.52 mm1
c = 12.5451 (10) Å T = 293 (2) K
β = 127.077 (5)º Irregular polyhedron, clear colourless
V = 552.08 (8) Å3 0.25 × 0.24 × 0.18 mm
Z = 2

Data collection

Stoe IPDSII diffractometer 1613 independent reflections
Radiation source: fine-focus sealed tube 1397 reflections with I > 2s(I)
Monochromator: graphite Rint = 0.067
T = 293(2) K θmax = 30.0º
ω scans (in two runs with φ1 = 0° and φ2 = 90°) θmin = 3.0º
Absorption correction: numerical[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] h = −11→11
Tmin = 0.065, Tmax = 0.155 k = −9→9
10921 measured reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.028   w = 1/[σ2(Fo2) + (0.0169P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 1.14 e Å3
1613 reflections Δρmin = −1.10 e Å3
72 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0409 (10)
Secondary atom site location: difference Fourier map

Special details

Experimental. The title compoud is a commercially available chemical (Alfa Aesar) and was recrystallized under argon from degassed aqueous HBr solution. A suitable single-crystal was sealed with mother liquor in a thin-walled glass capillary.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Eu1 0.50000 0.16454 (4) 0.25000 0.0170 (1)
Br1 0.70613 (6) −0.15845 (7) 0.44669 (4) 0.0295 (1)
Br2 0.00000 0.63151 (9) 0.25000 0.0318 (2)
O1 0.1772 (5) 0.3097 (5) 0.0676 (3) 0.0320 (7)
O2 0.2413 (5) 0.0620 (5) 0.2757 (4) 0.0313 (7)
O3 0.4434 (5) 0.4262 (5) 0.3524 (4) 0.0335 (7)
H11 0.148 (11) 0.336 (10) −0.006 (4) 0.06 (2)*
H12 0.072 (9) 0.258 (14) 0.050 (10) 0.10 (3)*
H21 0.253 (12) 0.098 (11) 0.342 (5) 0.07 (2)*
H22 0.183 (11) −0.046 (6) 0.253 (9) 0.09 (3)*
H31 0.518 (10) 0.526 (7) 0.376 (8) 0.08 (2)*
H32 0.321 (5) 0.456 (12) 0.315 (8) 0.09 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Eu1 0.0168 (1) 0.0180 (1) 0.0172 (1) 0.000 0.0109 (1) 0.000
Br1 0.0295 (2) 0.0293 (2) 0.0266 (3) 0.0027 (2) 0.0152 (2) 0.0066 (2)
Br2 0.0294 (3) 0.0360 (3) 0.0327 (4) 0.000 0.0202 (3) 0.000
O1 0.0233 (13) 0.0385 (17) 0.0256 (18) 0.0036 (12) 0.0102 (13) 0.0084 (14)
O2 0.0316 (15) 0.0367 (17) 0.0355 (19) −0.0076 (13) 0.0254 (15) −0.0055 (14)
O3 0.0308 (15) 0.0302 (15) 0.042 (2) −0.0035 (13) 0.0229 (16) −0.0106 (14)

Geometric parameters (Å, °)

Eu1—Br1 2.9449 (5) Eu1—O3i 2.388 (3)
Eu1—Br1i 2.9449 (5) O1—H11 0.82 (2)
Eu1—O1 2.424 (3) O1—H12 0.83 (2)
Eu1—O1i 2.424 (3) O2—H21 0.82 (2)
Eu1—O2 2.422 (3) O2—H22 0.82 (2)
Eu1—O2i 2.422 (3) O3—H31 0.83 (2)
Eu1—O3 2.388 (3) O3—H32 0.83 (2)
Br1—Eu1—O1 146.89 (8) O1—Eu1—O2 72.6 (1)
Br1i—Eu1—O1i 146.89 (8) O1i—Eu1—O2i 72.6 (1)
Br1—Eu1—O1i 76.21 (9) O1—Eu1—O2i 122.0 (1)
Br1i—Eu1—O1 76.21 (9) O1i—Eu1—O2 122.0 (1)
Br1—Eu1—O2 77.33 (8) O1—Eu1—O3 75.8 (1)
Br1i—Eu1—O2i 77.33 (8) O1i—Eu1—O3i 75.8 (1)
Br1—Eu1—O2i 78.22 (8) O1—Eu1—O3i 69.3 (1)
Br1i—Eu1—O2 78.22 (8) O1i—Eu1—O3 69.3 (1)
Br1—Eu1—O3 107.21 (9) O2—Eu1—O3 70.9 (1)
Br1i—Eu1—O3i 107.21 (9) O2i—Eu1—O3i 70.9 (1)
Br1—Eu1—O3i 143.18 (8) O2—Eu1—O3i 138.6 (1)
Br1i—Eu1—O3 143.18 (8) O2i—Eu1—O3 138.6 (1)
Br1—Eu1—Br1i 84.41 (2) H11—O1—H12 104 (8)
O1—Eu1—O1i 132.3 (2) H21—O2—H22 107 (8)
O2—Eu1—O2i 146.8 (2) H31—O3—H32 112 (8)
O3—Eu1—O3i 84.5 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H11···Br2ii 0.83 (2) 2.53 (8) 3.343 (4) 168 (6)
O1—H12···Br1iii 0.83 (2) 2.52 (13) 3.333 (4) 165 (6)
O2—H21···Br1iv 0.82 (2) 2.49 (10) 3.307 (4) 172 (6)
O2—H22···Br2v 0.83 (2) 2.63 (11) 3.417 (4) 161 (6)
O3—H31···Br1vi 0.83 (2) 2.46 (8) 3.288 (4) 173 (6)
O3—H32···Br2 0.83 (2) 2.52 (11) 3.328 (5) 163 (6)

Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, −y, z−1/2; (iv) −x+1, −y, −z+1; (v) x, y−1, z; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2051).

References

  1. Bärnighausen, H., Brauer, G. & Schultz, N. (1965). Z. Anorg. Allg. Chem.338, 250–265.
  2. Bell, A. M. T. & Smith, A. J. (1990). Acta Cryst. C46, 960–962.
  3. Burns, J. H. & Peterson, J. R. (1971). Inorg. Chem.10, 147–151.
  4. Demyanets, L. N., Bukin, V. I., Emelyanova, E. N. & Ivanov, V. I. (1974). Sov. Phys. Cystallogr.18, 806–808.
  5. Duhlev, R., Brown, I. D. & Faggiani, R. (1988). Acta Cryst. C44, 1693–1696.
  6. Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst.40, 188–192.
  7. Graeber, E. J., Conrad, G. H. & Duliere, S. F. (1966). Acta Cryst.21, 1012–1013.
  8. Habenschuss, A. & Spedding, F. H. (1980). Cryst. Struct. Commun.9, 71–75.
  9. Junk, P. C., Semenova, L. I., Skelton, B. W. & White, A. H. (1999). Austr. J. Chem.52, 531–538.
  10. Kolitsch, U. (2006). Acta Cryst. E62, i122–i123.
  11. Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst.14, 234–236.
  12. Reuter, G., Fink, H. & Seifert, H. J. (1994). Z. Anorg. Allg. Chem.620, 665–671.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  15. Stoe & Cie (1999). X-SHAPE Stoe & Cie GmbH, Darmstadt, Germany.
  16. Stoe & Cie (2001). X-RED Stoe & Cie GmbH, Darmstadt, Germany.
  17. Stoe & Cie (2006). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.
  18. Tegenfeldt, J., Tellgren, R., Pedersen, B. & Olovsson, I. (1979). Acta Cryst. B35, 1679–1682.
  19. Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem.621, 457–463.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014359/mg2051sup1.cif

e-64-00i35-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014359/mg2051Isup2.hkl

e-64-00i35-Isup2.hkl (79.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES