Abstract
The title compound crystallizes with the GdCl3·6H2O structure type, exhibiting discrete [EuBr2(H2O)6]+ cations as the main building blocks, linked with isolated bromide anions via H⋯Br hydrogen bonds to form a complex framework. The Eu atom and one Br atom each lie on a twofold rotation axis.
Related literature
For related literature, see: Bärnighausen et al. (1965 ▶); Bell & Smith (1990 ▶); Burns & Peterson (1971 ▶); Demyanets et al. (1974 ▶); Duhlev et al. (1988 ▶); Graeber et al. (1966 ▶); Habenschuss & Spedding (1980 ▶); Junk et al. (1999 ▶); Kolitsch (2006 ▶); Marezio et al. (1961 ▶); Reuter et al. (1994 ▶); Tegenfeldt et al. (1979 ▶); Wickleder & Meyer (1995 ▶).
Experimental
Crystal data
[EuBr2(H2O)6]Br
M r = 499.79
Monoclinic,
a = 8.1672 (7) Å
b = 6.7538 (4) Å
c = 12.5451 (10) Å
β = 127.077 (5)°
V = 552.08 (8) Å3
Z = 2
Mo Kα radiation
μ = 16.52 mm−1
T = 293 (2) K
0.25 × 0.24 × 0.18 mm
Data collection
Refinement
R[F 2 > 2σ(F 2)] = 0.028
wR(F 2) = 0.049
S = 1.11
1613 reflections
72 parameters
All H-atom parameters refined
Δρmax = 1.14 e Å−3
Δρmin = −1.10 e Å−3
Data collection: X-AREA (Stoe & Cie, 2006 ▶); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DRAWXTL (Finger et al., 2007 ▶); software used to prepare material for publication: PLATON (Spek, 2003 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014359/mg2051sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014359/mg2051Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Eu1—Br1 | 2.9449 (5) |
| Eu1—O1 | 2.424 (3) |
| Eu1—O2 | 2.422 (3) |
| Eu1—O3 | 2.388 (3) |
| Br1—Eu1—O1 | 146.89 (8) |
| Br1—Eu1—O1i | 76.21 (9) |
| Br1—Eu1—O2 | 77.33 (8) |
| Br1—Eu1—O2i | 78.22 (8) |
| Br1—Eu1—O3 | 107.21 (9) |
| Br1—Eu1—O3i | 143.18 (8) |
| Br1—Eu1—Br1i | 84.41 (2) |
| O1—Eu1—O1i | 132.3 (2) |
| O2—Eu1—O2i | 146.8 (2) |
| O3—Eu1—O3i | 84.5 (2) |
| O1—Eu1—O2 | 72.6 (1) |
| O1—Eu1—O2i | 122.0 (1) |
| O1—Eu1—O3 | 75.8 (1) |
| O1—Eu1—O3i | 69.3 (1) |
| O2—Eu1—O3 | 70.9 (1) |
| O2—Eu1—O3i | 138.6 (1) |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H11⋯Br2ii | 0.83 (2) | 2.53 (8) | 3.343 (4) | 168 (6) |
| O1—H12⋯Br1iii | 0.83 (2) | 2.52 (13) | 3.333 (4) | 165 (6) |
| O2—H21⋯Br1iv | 0.82 (2) | 2.49 (10) | 3.307 (4) | 172 (6) |
| O2—H22⋯Br2v | 0.83 (2) | 2.63 (11) | 3.417 (4) | 161 (6) |
| O3—H31⋯Br1vi | 0.83 (2) | 2.46 (8) | 3.288 (4) | 173 (6) |
| O3—H32⋯Br2 | 0.83 (2) | 2.52 (11) | 3.328 (5) | 163 (6) |
Symmetry codes: (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
supplementary crystallographic information
Comment
[EuBr2(H2O)6]Br crystallizes in the monoclinic space group P2/c (No. 13) and is isotypic with the GdCl3.6H2O structure type (Marezio et al., 1961), like many chloride hexahydrates MCl3.6H2O with M = Y (Bell & Smith, 1990), Ce (Reuter et al., 1994), Nd (Habenschuss & Spedding, 1980), Sm - Tm (Graeber et al., 1966), Am, Bk (Burns & Peterson, 1971), and two bromide hexahydrates MBr3.6H2O (M = Pr, Dy, Junk et al., 1999).
The Eu atoms in [EuBr2(H2O)6]Br are coordinated by six water molecules and two bromine atoms forming a distorted square antiprism (Fig. 1). Hydrogen bonds H—Br connect the [EuBr2(H2O)6]+ cations with the Br- counter-anions to a network. The bromine atom Br1 belonging to the cationic complex is surrounded by four, the isolated bromine atom Br2 by six hydrogen bonds (Fig. 2). A view of the unit cell of [EuBr2(H2O)6]Br is given in Fig. 3.
The H—Br distances (2.46–2.63 Å) are in good agreement with those in other bromide hydrates (e.g. 2.38–2.54 Å in [Sc(H2O)5(OH)]Br2, Kolitsch, 2006; 2.32–2.80 Å in [Ca(H2O)6]2[CdBr6], Duhlev et al., 1988; 2.40–2.83 A in NaBr.2H2O, Tegenfeldt et al., 1979). The EuIII—O distances in [EuBr2(H2O)6]Br range from 2.39 to 2.42 Å and thus are very similar to those in EuCl3.3H2O (2.39–2.40 Å, Reuter et al., 1994), EuCl3.6H2O (2.39–2.43 Å, Graeber et al., 1966), or EuCl(OH)2 (2.35–2.44 Å, Demyanets et al., 1974). The same holds for the EuIII—Br distances in [EuBr2(H2O)6]Br (2.94 Å) which lie between those in Na3EuBr6 (2.83 Å, Wickleder & Meyer, 1995) and those in EuOBr (3.19 Å, Bärnighausen et al., 1965).
Experimental
Colourless single crystals of [EuBr2(H2O)6]Br were obtained by recrystallizing the commercially available product ("EuBr3.X H2O", Alfa Aesar, 99.99%) under argon from degassed aqueous HBr solution by slow cooling of a solution saturated at ca 60 °C to room temperature.
Refinement
The positions of all hydrogen atoms were identified from the difference Fourier map, close to their ideal positions. Their refinement was performed applying a DFIX command (Sheldrick, 2008), restricting the O—H bond lengths to 0.82 ± 0.02 Å.
Figures
Fig. 1.
View of the cationic [Eu(H2O)6Br2]+ unit in [Eu(H2O)6Br2]Br, with displacement ellipsoids drawn at the 90% propability level. H atoms are shown as black spheres of arbitrary radii. [Symmetry code: (i) -x, y, 1/2 - z.]
Fig. 2.
View of the H—Br contacts in [Eu(H2O)6Br(2)2]Br(1), left: four hydrogen bonds link Br1 to water molecules, right: six hydrogen bonds link Br2 to water molecules. All displacement ellipsoids are drawn at the 90% propability level. [Symmetry codes: (i) -x, y, 1/2 - z; (ii) -x, -y, -z; (iii) x, -y, 1/2 + z.]
Fig. 3.
View along (010) on the crystal structure of [Eu(H2O)6Br2]Br. Small black spheres represent H atoms, large black spheres represent Eu atoms, grey spheres represent Br atoms, light grey spheres represent O atoms. Grey polyhedra represent the coordination of H atoms around Br atoms.
Crystal data
| [EuBr2(H2O)6]Br | F000 = 456 |
| Mr = 499.79 | Dx = 3.006 Mg m−3 |
| Monoclinic, P2/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2yc | Cell parameters from 10367 reflections |
| a = 8.1672 (7) Å | θ = 3.0–32.1º |
| b = 6.7538 (4) Å | µ = 16.52 mm−1 |
| c = 12.5451 (10) Å | T = 293 (2) K |
| β = 127.077 (5)º | Irregular polyhedron, clear colourless |
| V = 552.08 (8) Å3 | 0.25 × 0.24 × 0.18 mm |
| Z = 2 |
Data collection
| Stoe IPDSII diffractometer | 1613 independent reflections |
| Radiation source: fine-focus sealed tube | 1397 reflections with I > 2s(I) |
| Monochromator: graphite | Rint = 0.067 |
| T = 293(2) K | θmax = 30.0º |
| ω scans (in two runs with φ1 = 0° and φ2 = 90°) | θmin = 3.0º |
| Absorption correction: numerical[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −11→11 |
| Tmin = 0.065, Tmax = 0.155 | k = −9→9 |
| 10921 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Hydrogen site location: difference Fourier map |
| Least-squares matrix: full | All H-atom parameters refined |
| R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0169P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.049 | (Δ/σ)max < 0.001 |
| S = 1.11 | Δρmax = 1.14 e Å−3 |
| 1613 reflections | Δρmin = −1.10 e Å−3 |
| 72 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0409 (10) |
| Secondary atom site location: difference Fourier map |
Special details
| Experimental. The title compoud is a commercially available chemical (Alfa Aesar) and was recrystallized under argon from degassed aqueous HBr solution. A suitable single-crystal was sealed with mother liquor in a thin-walled glass capillary. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Eu1 | 0.50000 | 0.16454 (4) | 0.25000 | 0.0170 (1) | |
| Br1 | 0.70613 (6) | −0.15845 (7) | 0.44669 (4) | 0.0295 (1) | |
| Br2 | 0.00000 | 0.63151 (9) | 0.25000 | 0.0318 (2) | |
| O1 | 0.1772 (5) | 0.3097 (5) | 0.0676 (3) | 0.0320 (7) | |
| O2 | 0.2413 (5) | 0.0620 (5) | 0.2757 (4) | 0.0313 (7) | |
| O3 | 0.4434 (5) | 0.4262 (5) | 0.3524 (4) | 0.0335 (7) | |
| H11 | 0.148 (11) | 0.336 (10) | −0.006 (4) | 0.06 (2)* | |
| H12 | 0.072 (9) | 0.258 (14) | 0.050 (10) | 0.10 (3)* | |
| H21 | 0.253 (12) | 0.098 (11) | 0.342 (5) | 0.07 (2)* | |
| H22 | 0.183 (11) | −0.046 (6) | 0.253 (9) | 0.09 (3)* | |
| H31 | 0.518 (10) | 0.526 (7) | 0.376 (8) | 0.08 (2)* | |
| H32 | 0.321 (5) | 0.456 (12) | 0.315 (8) | 0.09 (3)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Eu1 | 0.0168 (1) | 0.0180 (1) | 0.0172 (1) | 0.000 | 0.0109 (1) | 0.000 |
| Br1 | 0.0295 (2) | 0.0293 (2) | 0.0266 (3) | 0.0027 (2) | 0.0152 (2) | 0.0066 (2) |
| Br2 | 0.0294 (3) | 0.0360 (3) | 0.0327 (4) | 0.000 | 0.0202 (3) | 0.000 |
| O1 | 0.0233 (13) | 0.0385 (17) | 0.0256 (18) | 0.0036 (12) | 0.0102 (13) | 0.0084 (14) |
| O2 | 0.0316 (15) | 0.0367 (17) | 0.0355 (19) | −0.0076 (13) | 0.0254 (15) | −0.0055 (14) |
| O3 | 0.0308 (15) | 0.0302 (15) | 0.042 (2) | −0.0035 (13) | 0.0229 (16) | −0.0106 (14) |
Geometric parameters (Å, °)
| Eu1—Br1 | 2.9449 (5) | Eu1—O3i | 2.388 (3) |
| Eu1—Br1i | 2.9449 (5) | O1—H11 | 0.82 (2) |
| Eu1—O1 | 2.424 (3) | O1—H12 | 0.83 (2) |
| Eu1—O1i | 2.424 (3) | O2—H21 | 0.82 (2) |
| Eu1—O2 | 2.422 (3) | O2—H22 | 0.82 (2) |
| Eu1—O2i | 2.422 (3) | O3—H31 | 0.83 (2) |
| Eu1—O3 | 2.388 (3) | O3—H32 | 0.83 (2) |
| Br1—Eu1—O1 | 146.89 (8) | O1—Eu1—O2 | 72.6 (1) |
| Br1i—Eu1—O1i | 146.89 (8) | O1i—Eu1—O2i | 72.6 (1) |
| Br1—Eu1—O1i | 76.21 (9) | O1—Eu1—O2i | 122.0 (1) |
| Br1i—Eu1—O1 | 76.21 (9) | O1i—Eu1—O2 | 122.0 (1) |
| Br1—Eu1—O2 | 77.33 (8) | O1—Eu1—O3 | 75.8 (1) |
| Br1i—Eu1—O2i | 77.33 (8) | O1i—Eu1—O3i | 75.8 (1) |
| Br1—Eu1—O2i | 78.22 (8) | O1—Eu1—O3i | 69.3 (1) |
| Br1i—Eu1—O2 | 78.22 (8) | O1i—Eu1—O3 | 69.3 (1) |
| Br1—Eu1—O3 | 107.21 (9) | O2—Eu1—O3 | 70.9 (1) |
| Br1i—Eu1—O3i | 107.21 (9) | O2i—Eu1—O3i | 70.9 (1) |
| Br1—Eu1—O3i | 143.18 (8) | O2—Eu1—O3i | 138.6 (1) |
| Br1i—Eu1—O3 | 143.18 (8) | O2i—Eu1—O3 | 138.6 (1) |
| Br1—Eu1—Br1i | 84.41 (2) | H11—O1—H12 | 104 (8) |
| O1—Eu1—O1i | 132.3 (2) | H21—O2—H22 | 107 (8) |
| O2—Eu1—O2i | 146.8 (2) | H31—O3—H32 | 112 (8) |
| O3—Eu1—O3i | 84.5 (2) |
Symmetry codes: (i) −x+1, y, −z+1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H11···Br2ii | 0.83 (2) | 2.53 (8) | 3.343 (4) | 168 (6) |
| O1—H12···Br1iii | 0.83 (2) | 2.52 (13) | 3.333 (4) | 165 (6) |
| O2—H21···Br1iv | 0.82 (2) | 2.49 (10) | 3.307 (4) | 172 (6) |
| O2—H22···Br2v | 0.83 (2) | 2.63 (11) | 3.417 (4) | 161 (6) |
| O3—H31···Br1vi | 0.83 (2) | 2.46 (8) | 3.288 (4) | 173 (6) |
| O3—H32···Br2 | 0.83 (2) | 2.52 (11) | 3.328 (5) | 163 (6) |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, −y, z−1/2; (iv) −x+1, −y, −z+1; (v) x, y−1, z; (vi) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2051).
References
- Bärnighausen, H., Brauer, G. & Schultz, N. (1965). Z. Anorg. Allg. Chem.338, 250–265.
- Bell, A. M. T. & Smith, A. J. (1990). Acta Cryst. C46, 960–962.
- Burns, J. H. & Peterson, J. R. (1971). Inorg. Chem.10, 147–151.
- Demyanets, L. N., Bukin, V. I., Emelyanova, E. N. & Ivanov, V. I. (1974). Sov. Phys. Cystallogr.18, 806–808.
- Duhlev, R., Brown, I. D. & Faggiani, R. (1988). Acta Cryst. C44, 1693–1696.
- Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst.40, 188–192.
- Graeber, E. J., Conrad, G. H. & Duliere, S. F. (1966). Acta Cryst.21, 1012–1013.
- Habenschuss, A. & Spedding, F. H. (1980). Cryst. Struct. Commun.9, 71–75.
- Junk, P. C., Semenova, L. I., Skelton, B. W. & White, A. H. (1999). Austr. J. Chem.52, 531–538.
- Kolitsch, U. (2006). Acta Cryst. E62, i122–i123.
- Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst.14, 234–236.
- Reuter, G., Fink, H. & Seifert, H. J. (1994). Z. Anorg. Allg. Chem.620, 665–671.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Stoe & Cie (1999). X-SHAPE Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (2001). X-RED Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (2006). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.
- Tegenfeldt, J., Tellgren, R., Pedersen, B. & Olovsson, I. (1979). Acta Cryst. B35, 1679–1682.
- Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem.621, 457–463.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014359/mg2051sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014359/mg2051Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



