Abstract
The effect of basic fibroblast growth factor (bFGF) administration on regional myocardial function and blood flow in chronically ischemic hearts was studied in 26 pigs instrumented with proximal circumflex coronary artery (LCX) ameroid constrictors. In 13 animals bFGF was administered extraluminally to the proximal left anterior descending (LAD) and LCX arteries with heparin-alginate beads and 13 other animal served as controls. bFGF-treated pigs showed a fourfold reduction in left ventricular infarct size compared to untreated controls (infarct size: 1.2 +/- 0.4% vs. 5.1 +/- 1.3% of LV mass, mean +/- SEM, P < 0.05). Percent fractional shortening (% FS) in the LCX area at rest was reduced compared with the LAD region in both bFGF and control pigs. However, there was better recovery in the LCX area after rapid pacing in bFGF-treated pigs (% FSLCX/% FSLAD, 22.9 +/- 7.3%-->30.5 +/- 8.5%, P < 0.05 vs. prepacing) than in controls (16.0 +/- 7.8%-->14.3 +/- 7.0%, P = NS). Furthermore, LV end-diastolic pressure rise with rapid pacing was less in bFGF-treated than control pigs (pre-pacing; pacing; post-pacing, 10 +/- 1; 17 +/- 3; 11 +/- 1* mmHg vs 10 +/- 1; 24 +/- 4; 15 +/- 1 mmHg, *P < 0.05 vs. control). Coronary blood flow in the LCX territory (normalized for LAD flow) was also better during pacing in bFGF-treated pigs than in controls. Thus, periadventitial administration of bFGF in a gradual coronary occlusion model in pigs results in improvement of coronary flow and reduction in infarct size in the compromised territory as well as in prevention of pacing-induced hemodynamic deterioration.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baffour R., Berman J., Garb J. L., Rhee S. W., Kaufman J., Friedmann P. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg. 1992 Aug;16(2):181–191. [PubMed] [Google Scholar]
- Burgess W. H., Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989;58:575–606. doi: 10.1146/annurev.bi.58.070189.003043. [DOI] [PubMed] [Google Scholar]
- Casscells W., Speir E., Sasse J., Klagsbrun M., Allen P., Lee M., Calvo B., Chiba M., Haggroth L., Folkman J. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest. 1990 Feb;85(2):433–441. doi: 10.1172/JCI114456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chleboun J. O., Martins R. N., Mitchell C. A., Chirila T. V. bFGF enhances the development of the collateral circulation after acute arterial occlusion. Biochem Biophys Res Commun. 1992 Jun 15;185(2):510–516. doi: 10.1016/0006-291x(92)91654-9. [DOI] [PubMed] [Google Scholar]
- Connolly D. T., Stoddard B. L., Harakas N. K., Feder J. Human fibroblast-derived growth factor is a mitogen and chemoattractant for endothelial cells. Biochem Biophys Res Commun. 1987 Apr 29;144(2):705–712. doi: 10.1016/s0006-291x(87)80022-0. [DOI] [PubMed] [Google Scholar]
- Cozzolino F., Torcia M., Lucibello M., Morbidelli L., Ziche M., Platt J., Fabiani S., Brett J., Stern D. Interferon-alpha and interleukin 2 synergistically enhance basic fibroblast growth factor synthesis and induce release, promoting endothelial cell growth. J Clin Invest. 1993 Jun;91(6):2504–2512. doi: 10.1172/JCI116486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuevas P., Carceller F., Ortega S., Zazo M., Nieto I., Giménez-Gallego G. Hypotensive activity of fibroblast growth factor. Science. 1991 Nov 22;254(5035):1208–1210. doi: 10.1126/science.1957172. [DOI] [PubMed] [Google Scholar]
- Cuevas P., Giménez-Gallego G., Carceller F., Cuevas B., Crespo A. Single topical application of human recombinant basic fibroblast growth factor (rbFGF) promotes neovascularization in rat cerebral cortex. Surg Neurol. 1993 May;39(5):380–384. doi: 10.1016/0090-3019(93)90205-f. [DOI] [PubMed] [Google Scholar]
- Edelman E. R., Mathiowitz E., Langer R., Klagsbrun M. Controlled and modulated release of basic fibroblast growth factor. Biomaterials. 1991 Sep;12(7):619–626. doi: 10.1016/0142-9612(91)90107-l. [DOI] [PubMed] [Google Scholar]
- Edelman E. R., Nugent M. A., Karnovsky M. J. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1513–1517. doi: 10.1073/pnas.90.4.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman E. R., Nugent M. A., Smith L. T., Karnovsky M. J. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest. 1992 Feb;89(2):465–473. doi: 10.1172/JCI115607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folkman J., Klagsbrun M., Sasse J., Wadzinski M., Ingber D., Vlodavsky I. A heparin-binding angiogenic protein--basic fibroblast growth factor--is stored within basement membrane. Am J Pathol. 1988 Feb;130(2):393–400. [PMC free article] [PubMed] [Google Scholar]
- Folkman J., Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–10934. [PubMed] [Google Scholar]
- Gaudric A., N'guyen T., Moenner M., Glacet-Bernard A., Barritault D. Quantification of angiogenesis due to basic fibroblast growth factor in a modified rabbit corneal model. Ophthalmic Res. 1992;24(3):181–188. doi: 10.1159/000267166. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D. Fibroblast growth factors: from genes to clinical applications. Cell Biol Rev. 1991;25(4):307-16, 337-9. [PubMed] [Google Scholar]
- Heusch G., Guth B. D., Seitelberger R., Ross J., Jr Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation. 1987 Feb;75(2):482–490. doi: 10.1161/01.cir.75.2.482. [DOI] [PubMed] [Google Scholar]
- Kardami E., Fandrich R. R. Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J Cell Biol. 1989 Oct;109(4 Pt 1):1865–1875. doi: 10.1083/jcb.109.4.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klagsbrun M. Mediators of angiogenesis: the biological significance of basic fibroblast growth factor (bFGF)-heparin and heparan sulfate interactions. Semin Cancer Biol. 1992 Apr;3(2):81–87. [PubMed] [Google Scholar]
- Kowallik P., Schulz R., Guth B. D., Schade A., Paffhausen W., Gross R., Heusch G. Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation. 1991 Mar;83(3):974–982. doi: 10.1161/01.cir.83.3.974. [DOI] [PubMed] [Google Scholar]
- Ledoux D., Gannoun-Zaki L., Barritault D. Interactions of FGFs with target cells. Prog Growth Factor Res. 1992;4(2):107–120. doi: 10.1016/0955-2235(92)90026-e. [DOI] [PubMed] [Google Scholar]
- Lindner V., Lappi D. A., Baird A., Majack R. A., Reidy M. A. Role of basic fibroblast growth factor in vascular lesion formation. Circ Res. 1991 Jan;68(1):106–113. doi: 10.1161/01.res.68.1.106. [DOI] [PubMed] [Google Scholar]
- Lindner V., Majack R. A., Reidy M. A. Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J Clin Invest. 1990 Jun;85(6):2004–2008. doi: 10.1172/JCI114665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindner V., Reidy M. A. Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. An en face study. Circ Res. 1993 Sep;73(3):589–595. doi: 10.1161/01.res.73.3.589. [DOI] [PubMed] [Google Scholar]
- Lindner V., Reidy M. A. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3739–3743. doi: 10.1073/pnas.88.9.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellin T. N., Mennie R. J., Cashen D. E., Ronan J. J., Capparella J., James M. L., Disalvo J., Frank J., Linemeyer D., Gimenez-Gallego G. Acidic fibroblast growth factor accelerates dermal wound healing. Growth Factors. 1992;7(1):1–14. doi: 10.3109/08977199209023933. [DOI] [PubMed] [Google Scholar]
- Millauer B., Wizigmann-Voos S., Schnürch H., Martinez R., Møller N. P., Risau W., Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993 Mar 26;72(6):835–846. doi: 10.1016/0092-8674(93)90573-9. [DOI] [PubMed] [Google Scholar]
- Momomura S., Ferguson J. J., Miller M. J., Parker J. A., Grossman W. Regional myocardial blood flow and left ventricular diastolic properties in pacing-induced ischemia. J Am Coll Cardiol. 1991 Mar 1;17(3):781–789. doi: 10.1016/s0735-1097(10)80198-6. [DOI] [PubMed] [Google Scholar]
- Montesano R., Vassalli J. D., Baird A., Guillemin R., Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7297–7301. doi: 10.1073/pnas.83.19.7297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison R. S. Suppression of basic fibroblast growth factor expression by antisense oligodeoxynucleotides inhibits the growth of transformed human astrocytes. J Biol Chem. 1991 Jan 15;266(2):728–734. [PubMed] [Google Scholar]
- Nabel E. G., Yang Z. Y., Plautz G., Forough R., Zhan X., Haudenschild C. C., Maciag T., Nabel G. J. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature. 1993 Apr 29;362(6423):844–846. doi: 10.1038/362844a0. [DOI] [PubMed] [Google Scholar]
- O'Konski M. S., White F. C., Longhurst J., Roth D., Bloor C. M. Ameroid constriction of the proximal left circumflex coronary artery in swine. A model of limited coronary collateral circulation. Am J Cardiovasc Pathol. 1987 Jan;1(1):69–77. [PubMed] [Google Scholar]
- Parlow M. H., Bolender D. L., Kokan-Moore N. P., Lough J. Localization of bFGF-like proteins as punctate inclusions in the preseptation myocardium of the chicken embryo. Dev Biol. 1991 Jul;146(1):139–147. doi: 10.1016/0012-1606(91)90454-b. [DOI] [PubMed] [Google Scholar]
- Pepper M. S., Belin D., Montesano R., Orci L., Vassalli J. D. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol. 1990 Aug;111(2):743–755. doi: 10.1083/jcb.111.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Presta M., Maier J. A., Rusnati M., Ragnotti G. Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol. 1989 Jul;140(1):68–74. doi: 10.1002/jcp.1041400109. [DOI] [PubMed] [Google Scholar]
- Roth D. M., Maruoka Y., Rogers J., White F. C., Longhurst J. C., Bloor C. M. Development of coronary collateral circulation in left circumflex Ameroid-occluded swine myocardium. Am J Physiol. 1987 Nov;253(5 Pt 2):H1279–H1288. doi: 10.1152/ajpheart.1987.253.5.H1279. [DOI] [PubMed] [Google Scholar]
- Roth D. M., White F. C., Mathieu-Costello O., Guth B. D., Heusch G., Bloor C. M., Longhurst J. C. Effects of left circumflex Ameroid constrictor placement on adrenergic innervation of myocardium. Am J Physiol. 1987 Dec;253(6 Pt 2):H1425–H1434. doi: 10.1152/ajpheart.1987.253.6.H1425. [DOI] [PubMed] [Google Scholar]
- Sakuda H., Nakashima Y., Kuriyama S., Sueishi K. Media conditioned by smooth muscle cells cultured in a variety of hypoxic environments stimulates in vitro angiogenesis. A relationship to transforming growth factor-beta 1. Am J Pathol. 1992 Dec;141(6):1507–1516. [PMC free article] [PubMed] [Google Scholar]
- Schaper W. Angiogenesis in the adult heart. Basic Res Cardiol. 1991;86 (Suppl 2):51–56. doi: 10.1007/978-3-642-72461-9_6. [DOI] [PubMed] [Google Scholar]
- Schaper W., Sharma H. S., Quinkler W., Markert T., Wünsch M., Schaper J. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol. 1990 Mar 1;15(3):513–518. doi: 10.1016/0735-1097(90)90618-y. [DOI] [PubMed] [Google Scholar]
- Schweigerer L., Neufeld G., Friedman J., Abraham J. A., Fiddes J. C., Gospodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature. 1987 Jan 15;325(6101):257–259. doi: 10.1038/325257a0. [DOI] [PubMed] [Google Scholar]
- Schöllmann C., Grugel R., Tatje D., Hoppe J., Folkman J., Marmé D., Weich H. A. Basic fibroblast growth factor modulates the mitogenic potency of the platelet-derived growth factor (PDGF) isoforms by specific upregulation of the PDGF alpha receptor in vascular smooth muscle cells. J Biol Chem. 1992 Sep 5;267(25):18032–18039. [PubMed] [Google Scholar]
- Sellke F. W., Kagaya Y., Johnson R. G., Shafique T., Schoen F. J., Grossman W., Weintraub R. M. Endothelial modulation of porcine coronary microcirculation perfused via immature collaterals. Am J Physiol. 1992 Jun;262(6 Pt 2):H1669–H1675. doi: 10.1152/ajpheart.1992.262.6.H1669. [DOI] [PubMed] [Google Scholar]
- Sellke F. W., Quillen J. E., Brooks L. A., Harrison D. G. Endothelial modulation of the coronary vasculature in vessels perfused via mature collaterals. Circulation. 1990 Jun;81(6):1938–1947. doi: 10.1161/01.cir.81.6.1938. [DOI] [PubMed] [Google Scholar]
- Unger E. F., Banai S., Shou M., Jaklitsch M., Hodge E., Correa R., Jaye M., Epstein S. E. A model to assess interventions to improve collateral blood flow: continuous administration of agents into the left coronary artery in dogs. Cardiovasc Res. 1993 May;27(5):785–791. doi: 10.1093/cvr/27.5.785. [DOI] [PubMed] [Google Scholar]
- Villaschi S., Nicosia R. F. Angiogenic role of endogenous basic fibroblast growth factor released by rat aorta after injury. Am J Pathol. 1993 Jul;143(1):181–190. [PMC free article] [PubMed] [Google Scholar]
- Vlodavsky I., Folkman J., Sullivan R., Fridman R., Ishai-Michaeli R., Sasse J., Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2292–2296. doi: 10.1073/pnas.84.8.2292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whalen G. F., Shing Y., Folkman J. The fate of intravenously administered bFGF and the effect of heparin. Growth Factors. 1989;1(2):157–164. doi: 10.3109/08977198909029125. [DOI] [PubMed] [Google Scholar]
- White F. C., Bloor C. M. Coronary collateral circulation in the pig: correlation of collateral flow with coronary bed size. Basic Res Cardiol. 1981 Mar-Apr;76(2):189–196. doi: 10.1007/BF01907957. [DOI] [PubMed] [Google Scholar]
- White F. C., Carroll S. M., Magnet A., Bloor C. M. Coronary collateral development in swine after coronary artery occlusion. Circ Res. 1992 Dec;71(6):1490–1500. doi: 10.1161/01.res.71.6.1490. [DOI] [PubMed] [Google Scholar]
- White F. C., Roth D. M., Bloor C. M. Coronary collateral reserve during exercise induced ischemia in swine. Basic Res Cardiol. 1989 Jan-Feb;84(1):42–54. doi: 10.1007/BF01907002. [DOI] [PubMed] [Google Scholar]
- Yanagisawa-Miwa A., Uchida Y., Nakamura F., Tomaru T., Kido H., Kamijo T., Sugimoto T., Kaji K., Utsuyama M., Kurashima C. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science. 1992 Sep 4;257(5075):1401–1403. doi: 10.1126/science.1382313. [DOI] [PubMed] [Google Scholar]

