Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1062. doi: 10.1107/S160053680801372X

N-(2,6-Dimethyl­anilino)-5,6-dihydro-4H-1,3-thia­zin-3-ium chloride monohydrate

Mikelis V Veidis a,*, Liana Orola a, Reinis Arajs a
PMCID: PMC2961393  PMID: 21202581

Abstract

In the title compound, alternatively called xylazine hydro­chloride monohydrate, C12H17N2S+·Cl·H2O, the six-membered thia­zine ring is in a half-chair conformation. In the crystal structure, six component centrosymmetric clusters are formed via inter­molecular O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds involving xylazine cations, chloride anions and water mol­ecules.

Related literature

For related literature see: Carpy et al. (1979); Kalman et al. (1977).graphic file with name e-64-o1062-scheme1.jpg

Experimental

Crystal data

  • C12H17N2S+·Cl·H2O

  • M r = 274.81

  • Monoclinic, Inline graphic

  • a = 13.4546 (2) Å

  • b = 8.6547 (1) Å

  • c = 12.7732 (2) Å

  • β = 109.210 (2)°

  • V = 1404.56 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.69 mm−1

  • T = 100 K

  • 0.44 × 0.25 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: numerical (de Meulenaer & Tompa, 1965) T min = 0.30, T max = 0.61

  • 19046 measured reflections

  • 2747 independent reflections

  • 2509 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.088

  • S = 1.01

  • 2509 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801372X/lh2620sup1.cif

e-64-o1062-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801372X/lh2620Isup2.hkl

e-64-o1062-Isup2.hkl (137.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O17 0.87 1.97 2.815 (2) 163
O17—H171⋯Cl16i 0.82 2.36 3.158 (1) 164
N7—H7⋯Cl16i 0.87 2.37 3.204 (1) 162
O17—H172⋯Cl16ii 0.83 2.35 3.171 (1) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Oxford Diffraction Ltd for the low-temperature data collection and reduction. Cooperation of the University of Cincinnati Crystallography Centre and the Latvia Institute of Organic Synthesis is acknowledged. Financial aid was provided by Latvia Science Council grant 05.1737.

supplementary crystallographic information

Comment

Xylazine hydrochloride monohydrate is a pharmaceutical used in veterinary medicine as an anesthetic. The substance is an alpha2-agonist with sedative, analgesic, and muscle relaxing properties.

The crystal structure of the title compound has been determined at 100 K. The structure is depicted in Fig. 1. The phenyl ring forms a dihedral angle of 83.24 (14)° with the plane defined by S1, C6 and N5 of the thiazine ring. The six-member thiazine ring assumes the half-chair conformation.

Hydrogen atoms are bonded to both nitrogen atoms forming a cation. Both hydrogen atoms participate in hydrogen bonding. The two xylazine moieties are held together through an extended H-bond network involving the nitrogen, oxygen, and chlorine anions. In the crystal structure, centrosymmetric clusters are formed by N—H···O—H···Cl···H—N hydrogen bond sequence between the two xylazine moieties.

There are H-bonds which do not join the xylazine moities between oxygen and chlorine (Fig. 2). These may impart additional rigidity in the cluster. As a result of Cl···H—O hydrogen bonding a parallelogram is formed by the Cl—O—Cl—O atoms.

The hydrogen bond lengths are given in the Table 1.

Experimental

The title compound was supplied by Grindeks Company. For crystal structure determination suitable crystals were grown by slow evaporation of an ethanol (96%) solution at room temperature.

Refinement

The hydrogen atoms were located by difference Fourier method. During refinement hydrogen atoms were costrained to the riding mode. Uiso(H)=xUeq(C,N,O), where the average values of x are 1.15 for H atoms bonded to the thiazine ring, 1.48 for methyl H atoms, 1.16 for benzene ring H atoms, 1.17 fot the H atoms bonded to the nitrogen atoms and 1.44 for the H atoms of the water molecule.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Intermolecular hydrogen bond formation (dashed lines) in the title compound.

Crystal data

C12H17N2S+·Cl·H2O F000 = 584
Mr = 274.81 Dx = 1.300 Mg m3
Monoclinic, P21/c Cu Kα radiation λ = 1.5418 Å
Hall symbol: -P 2ybc Cell parameters from 19046 reflections
a = 13.4546 (2) Å θ = 3.5–74.6º
b = 8.6547 (1) Å µ = 3.69 mm1
c = 12.7732 (2) Å T = 100 K
β = 109.210 (2)º Prism, white
V = 1404.56 (4) Å3 0.44 × 0.25 × 0.14 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer 2747 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2509 reflections with I > 2.0σ(I)
Monochromator: graphite Rint = 0.029
T = 100 K θmax = 74.6º
φ and ω scans θmin = 3.5º
Absorption correction: numerical(de Meulenaer & Tompa, 1965) h = −16→16
Tmin = 0.30, Tmax = 0.61 k = −10→10
19046 measured reflections l = −15→15

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   W = [weight][1-(δF/6σF)2]2
R[F2 > 2σ(F2)] = 0.033 (Δ/σ)max = 0.0003
wR(F2) = 0.088 Δρmax = 0.43 e Å3
S = 1.02 Δρmin = −0.33 e Å3
2509 reflections Extinction correction: none
154 parameters

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.72343 (3) 0.06408 (5) 0.19253 (3) 0.0234
C2 0.79732 (14) −0.11421 (19) 0.19970 (14) 0.0244
C3 0.90751 (14) −0.0827 (2) 0.19854 (14) 0.0252
C4 0.90283 (13) −0.0099 (2) 0.08935 (14) 0.0244
N5 0.84522 (11) 0.13793 (17) 0.06888 (12) 0.0225
C6 0.76970 (12) 0.17936 (19) 0.10687 (13) 0.0199
N7 0.72435 (11) 0.31807 (16) 0.08222 (11) 0.0217
C8 0.65460 (13) 0.37922 (18) 0.13689 (14) 0.0210
C9 0.69975 (13) 0.4718 (2) 0.23077 (14) 0.0224
C10 0.63438 (14) 0.5346 (2) 0.28445 (15) 0.0278
C11 0.52719 (15) 0.5046 (2) 0.24466 (17) 0.0319
C12 0.48404 (14) 0.4128 (2) 0.15214 (17) 0.0300
C13 0.54694 (13) 0.3482 (2) 0.09525 (15) 0.0255
C14 0.49879 (15) 0.2481 (2) −0.00495 (16) 0.0319
C15 0.81647 (13) 0.4980 (2) 0.27462 (14) 0.0249
Cl16 0.18401 (3) 0.10294 (5) 0.51765 (3) 0.0238
O17 0.94136 (9) 0.31268 (14) −0.05720 (10) 0.0272
H21 0.8012 −0.1644 0.2678 0.0280*
H31 0.9450 −0.1803 0.2067 0.0276*
H32 0.9432 −0.0145 0.2573 0.0277*
H41 0.9748 0.0101 0.0908 0.0289*
H42 0.8694 −0.0804 0.0300 0.0289*
H141 0.4312 0.2885 −0.0488 0.0475*
H142 0.5426 0.2414 −0.0510 0.0467*
H143 0.4889 0.1450 0.0189 0.0475*
H151 0.8332 0.5724 0.3339 0.0357*
H152 0.8415 0.5357 0.2174 0.0356*
H153 0.8515 0.4017 0.3030 0.0359*
H171 0.9124 0.3966 −0.0570 0.0391*
H172 1.0056 0.3286 −0.0335 0.0395*
H22 0.7604 −0.1794 0.1379 0.0278*
H5 0.8667 0.2066 0.0318 0.0267*
H7 0.7466 0.3812 0.0417 0.0250*
H10 0.6635 0.5960 0.3474 0.0320*
H11 0.4838 0.5483 0.2825 0.0362*
H12 0.4111 0.3933 0.1255 0.0341*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0236 (2) 0.0216 (2) 0.0306 (2) 0.00450 (15) 0.01642 (17) 0.00271 (14)
C2 0.0292 (9) 0.0208 (8) 0.0269 (8) 0.0023 (6) 0.0143 (7) 0.0055 (6)
C3 0.0257 (8) 0.0265 (8) 0.0251 (8) −0.0001 (7) 0.0109 (7) 0.0059 (7)
C4 0.0227 (8) 0.0262 (9) 0.0274 (8) −0.0012 (7) 0.0127 (7) 0.0037 (6)
N5 0.0227 (7) 0.0222 (7) 0.0268 (7) 0.0015 (5) 0.0137 (5) 0.0004 (5)
C6 0.0186 (7) 0.0218 (8) 0.0203 (7) −0.0012 (6) 0.0076 (6) −0.0019 (6)
N7 0.0237 (7) 0.0206 (7) 0.0245 (7) 0.0018 (5) 0.0130 (6) 0.0002 (5)
C8 0.0203 (7) 0.0193 (8) 0.0258 (8) 0.0046 (6) 0.0107 (6) 0.0032 (6)
C9 0.0225 (8) 0.0204 (8) 0.0258 (8) 0.0035 (6) 0.0103 (7) 0.0035 (6)
C10 0.0297 (9) 0.0274 (8) 0.0296 (9) −0.0003 (7) 0.0140 (7) 0.0043 (7)
C11 0.0274 (9) 0.0319 (10) 0.0432 (10) 0.0024 (8) 0.0209 (8) 0.0065 (7)
C12 0.0181 (8) 0.0290 (9) 0.0442 (11) 0.0072 (8) 0.0121 (7) 0.0020 (7)
C13 0.0221 (8) 0.0218 (8) 0.0319 (9) 0.0052 (7) 0.0078 (7) 0.0008 (6)
C14 0.0264 (8) 0.0263 (9) 0.0382 (10) 0.0001 (8) 0.0042 (7) −0.0029 (7)
C15 0.0224 (8) 0.0254 (9) 0.0259 (8) 0.0012 (7) 0.0065 (7) 0.0007 (6)
Cl16 0.0232 (2) 0.0239 (2) 0.0266 (2) 0.00033 (14) 0.01150 (16) 0.00127 (14)
O17 0.0244 (6) 0.0248 (6) 0.0351 (7) −0.0025 (5) 0.0135 (5) −0.0028 (5)

Geometric parameters (Å, °)

S1—C2 1.8215 (17) C9—C10 1.391 (2)
S1—C6 1.7403 (16) C9—C15 1.501 (2)
C2—C3 1.512 (2) C10—C11 1.387 (3)
C2—H21 0.959 C10—H10 0.936
C2—H22 0.964 C11—C12 1.383 (3)
C3—C4 1.513 (2) C11—H11 0.950
C3—H31 0.971 C12—C13 1.401 (3)
C3—H32 0.952 C12—H12 0.942
C4—N5 1.474 (2) C13—C14 1.504 (3)
C4—H41 0.977 C14—H141 0.964
C4—H42 0.961 C14—H142 0.961
N5—C6 1.312 (2) C14—H143 0.966
N5—H5 0.866 C15—H151 0.963
C6—N7 1.336 (2) C15—H152 0.957
N7—C8 1.442 (2) C15—H153 0.967
N7—H7 0.870 O17—H171 0.825
C8—C9 1.404 (2) O17—H172 0.829
C8—C13 1.395 (2)
C2—S1—C6 102.42 (8) C9—C8—C13 122.61 (15)
S1—C2—C3 111.57 (12) C8—C9—C10 118.55 (16)
S1—C2—H21 107.2 C8—C9—C15 120.71 (15)
C3—C2—H21 109.3 C10—C9—C15 120.71 (16)
S1—C2—H22 109.2 C9—C10—C11 119.76 (17)
C3—C2—H22 109.9 C9—C10—H10 119.4
H21—C2—H22 109.7 C11—C10—H10 120.8
C2—C3—C4 109.91 (14) C10—C11—C12 120.93 (16)
C2—C3—H31 108.6 C10—C11—H11 118.6
C4—C3—H31 108.9 C12—C11—H11 120.5
C2—C3—H32 110.3 C11—C12—C13 121.14 (16)
C4—C3—H32 109.0 C11—C12—H12 120.4
H31—C3—H32 110.2 C13—C12—H12 118.5
C3—C4—N5 112.65 (13) C12—C13—C8 117.01 (16)
C3—C4—H41 108.4 C12—C13—C14 120.45 (16)
N5—C4—H41 108.0 C8—C13—C14 122.53 (16)
C3—C4—H42 109.2 C13—C14—H141 110.2
N5—C4—H42 109.1 C13—C14—H142 112.1
H41—C4—H42 109.3 H141—C14—H142 108.5
C4—N5—C6 126.70 (14) C13—C14—H143 109.2
C4—N5—H5 116.2 H141—C14—H143 108.5
C6—N5—H5 116.9 H142—C14—H143 108.3
S1—C6—N5 123.83 (13) C9—C15—H151 109.9
S1—C6—N7 115.66 (12) C9—C15—H152 110.8
N5—C6—N7 120.50 (15) H151—C15—H152 108.8
C6—N7—C8 122.35 (13) C9—C15—H153 109.3
C6—N7—H7 118.9 H151—C15—H153 108.8
C8—N7—H7 117.6 H152—C15—H153 109.3
N7—C8—C9 117.10 (14) H171—O17—H172 106.9
N7—C8—C13 120.28 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5···O17 0.87 1.97 2.815 (2) 163
O17—H171···Cl16i 0.82 2.36 3.158 (1) 164
N7—H7···Cl16i 0.87 2.37 3.204 (1) 162
O17—H172···Cl16ii 0.83 2.35 3.171 (1) 173

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2620).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Carpy, A., Gadret, M. & Leger, J. M. (1979). Acta Cryst. B35, 994–996.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Kalman, A., Argay, G., Ribar, B. & Toldy, L. (1977). Tetrahedron Lett.18, 4241–4244.
  6. Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014–1018.
  7. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801372X/lh2620sup1.cif

e-64-o1062-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801372X/lh2620Isup2.hkl

e-64-o1062-Isup2.hkl (137.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES