Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 21;64(Pt 6):m828. doi: 10.1107/S1600536808014748

Chlorido(pyridine-2-carbaldehyde oximato-κ2 N,N′)(pyridine-2-carbaldehyde oxime-κ2 N,N′)copper(II)

Genhua Wu a, Dayu Wu a,*
PMCID: PMC2961395  PMID: 21202510

Abstract

In the title compound, [Cu(C6H5N2O)Cl(C6H6N2O)], the Cu atom is coordinated by one neutral and one deprotonated pyridine-2-carboxaldehyde oxime (pco) ligand, resulting in the formation of two five-membered CuN2C2 rings. Together with the additional coordinating chloride anion, the coordination polyhedron of copper is best described as a distorted square-pyramid, the distortion parameter being 0.288. The two organic ligands are linked by an intramolecular O—H⋯O hydrogen bond.

Related literature

For related literature, see: Addison et al. (1984); Afrati et al. (2005); Korpi et al. (2005); Pearse et al. (1989); Stamatatos et al. (2006).graphic file with name e-64-0m828-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H5N2O)Cl(C6H6N2O)]

  • M r = 342.24

  • Monoclinic, Inline graphic

  • a = 16.686 (2) Å

  • b = 12.064 (2) Å

  • c = 13.805 (1) Å

  • β = 109.02 (1)°

  • V = 2627.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 293 (2) K

  • 0.22 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008) T min = 0.488, T max = 0.594 (expected range = 0.620–0.755)

  • 6487 measured reflections

  • 2318 independent reflections

  • 1788 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.110

  • S = 1.01

  • 2318 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014748/im2064sup1.cif

e-64-0m828-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014748/im2064Isup2.hkl

e-64-0m828-Isup2.hkl (114KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2 0.82 1.70 2.488 (5) 162

Acknowledgments

DW thanks Anqing Teachers College for financial support.

supplementary crystallographic information

Comment

Pyridine-2-carbaldehyde oxime ligands usually bind to metals in a bidentate fashion, either chelating one metal center or bridging two metals. Their complexes find application in diverse areas such as functional supramolecular design, magnetic materials and catalysis (Korpi et al., 2005; Pearse et al., 1989; Afrati et al., 2005; Stamatatos et al., 2006). The title compound is a new copper complex from the reaction of CuCl2 with pyridine-2-carbaldehyde oxime (pco). The compound consists of two N,N-chelating ligands and one chloride anion. The two pco ligands are coordinated to copper to form two five-membered CuC2N2 rings. The copper atom adopts a distorted 4 + 1 square-pyramidal coordination mode with the distortion parameter being 0.288 (Addison et al., 1984) and the angles around copper ion ranging from 79.07 (1)° for N3—Cu1—N4 to 168.37 (1)° for N2—Cu1—N3. From the viewpoint of charge balance, it is presumed there exists one deprotonated and one protonated oxime ligand with a strong intramolecular hydrogen bond between the OH group and the negatively charged oxygen of the other ligand (O1···O2 = 2.488 Å) which would also give an explanation for the rather unusal cis-arrangement of the ligands (Scheme 1, Figure 1. ).

Experimental

A methanolic solution (15 ml) containing pco (0.1 mmol, 0.012 g) was added to an methanolic solution (10 ml) containing CuCl2 × 2 H2O (0.1 mmol, 0.017 g). After stirring for 2 h, the solution was filtered. Dark green needle-like crystals suitable for single-crystal X-ray diffraction were obtained by evaporating the resulting filtrate in air for several days (yield 65.6% based on the ligand).

Refinement

H atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93–0.96 Å and O—H = 0.82 Å with Uiso(H) = 1.2 or 1.5Ueq(C or O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.

Crystal data

[Cu(C6H5N2O)Cl(C6H6N2O)] F000 = 1384
Mr = 342.24 Dx = 1.730 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2343 reflections
a = 16.686 (2) Å θ = 2.4–26.6º
b = 12.064 (2) Å µ = 1.87 mm1
c = 13.805 (1) Å T = 293 (2) K
β = 109.02 (1)º Block, dark green
V = 2627.3 (5) Å3 0.22 × 0.18 × 0.15 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 2318 independent reflections
Radiation source: fine-focus sealed tube 1788 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.034
T = 293(2) K θmax = 25.0º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SHELXTL; Sheldrick, 2008) h = −14→19
Tmin = 0.488, Tmax = 0.594 k = −14→13
6487 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.110   w = 1/[σ2(Fo2) + (0.065P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
2318 reflections Δρmax = 0.40 e Å3
181 parameters Δρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.45583 (2) 0.75857 (3) 0.08754 (3) 0.03490 (18)
Cl1 0.39133 (6) 0.74459 (6) −0.09737 (7) 0.0452 (3)
N2 0.39301 (17) 0.8985 (2) 0.1014 (2) 0.0365 (6)
N3 0.53622 (18) 0.6345 (2) 0.0978 (2) 0.0432 (7)
N4 0.39418 (17) 0.6311 (2) 0.1352 (2) 0.0386 (7)
O2 0.60997 (16) 0.6484 (2) 0.0801 (2) 0.0594 (7)
C1 0.3107 (2) 0.9115 (3) 0.0892 (3) 0.0445 (9)
H1A 0.2761 0.8491 0.0764 0.053*
N1 0.54953 (17) 0.8713 (2) 0.1156 (2) 0.0431 (7)
C11 0.4316 (2) 0.5328 (3) 0.1314 (3) 0.0427 (9)
C5 0.4419 (2) 0.9892 (3) 0.1166 (3) 0.0433 (8)
O1 0.63020 (15) 0.8491 (3) 0.1224 (2) 0.0666 (8)
H1B 0.6346 0.7834 0.1100 0.100*
C2 0.2750 (3) 1.0126 (4) 0.0946 (3) 0.0585 (11)
H2A 0.2177 1.0187 0.0866 0.070*
C9 0.3236 (3) 0.4362 (4) 0.1762 (3) 0.0647 (12)
H9A 0.3002 0.3707 0.1903 0.078*
C7 0.3232 (2) 0.6295 (3) 0.1599 (3) 0.0457 (9)
H7A 0.2973 0.6968 0.1638 0.055*
C12 0.5115 (2) 0.5390 (3) 0.1109 (3) 0.0463 (9)
H12A 0.5426 0.4760 0.1076 0.056*
C6 0.5299 (2) 0.9703 (3) 0.1257 (3) 0.0483 (9)
H6A 0.5692 1.0276 0.1381 0.058*
C10 0.3975 (3) 0.4349 (3) 0.1509 (3) 0.0579 (11)
H10A 0.4239 0.3680 0.1471 0.069*
C8 0.2865 (3) 0.5352 (4) 0.1798 (3) 0.0593 (11)
H8A 0.2365 0.5388 0.1957 0.071*
C4 0.4094 (3) 1.0927 (3) 0.1215 (3) 0.0636 (12)
H4A 0.4440 1.1550 0.1313 0.076*
C3 0.3253 (3) 1.1034 (3) 0.1118 (4) 0.0718 (13)
H3A 0.3029 1.1729 0.1171 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0277 (3) 0.0340 (3) 0.0441 (3) 0.00547 (15) 0.0132 (2) −0.00158 (17)
Cl1 0.0482 (6) 0.0432 (5) 0.0407 (5) 0.0035 (4) 0.0094 (4) −0.0023 (4)
N2 0.0355 (16) 0.0317 (15) 0.0418 (16) 0.0041 (12) 0.0118 (13) −0.0026 (12)
N3 0.0398 (17) 0.0480 (19) 0.0432 (17) 0.0156 (14) 0.0152 (14) 0.0003 (14)
N4 0.0385 (16) 0.0366 (16) 0.0392 (16) 0.0031 (12) 0.0107 (13) 0.0023 (12)
O2 0.0440 (16) 0.0712 (19) 0.0731 (19) 0.0207 (14) 0.0327 (14) 0.0047 (15)
C1 0.040 (2) 0.044 (2) 0.049 (2) 0.0096 (16) 0.0142 (17) 0.0009 (16)
N1 0.0286 (16) 0.0516 (19) 0.0505 (18) −0.0040 (13) 0.0147 (14) −0.0005 (14)
C11 0.052 (2) 0.0372 (19) 0.032 (2) 0.0057 (16) 0.0044 (17) −0.0001 (15)
C5 0.052 (2) 0.038 (2) 0.040 (2) 0.0022 (16) 0.0157 (18) −0.0024 (16)
O1 0.0326 (15) 0.077 (2) 0.092 (2) −0.0025 (13) 0.0241 (15) −0.0042 (17)
C2 0.051 (2) 0.066 (3) 0.059 (3) 0.029 (2) 0.019 (2) 0.002 (2)
C9 0.069 (3) 0.058 (3) 0.058 (3) −0.024 (2) 0.009 (2) 0.009 (2)
C7 0.041 (2) 0.051 (2) 0.047 (2) −0.0006 (17) 0.0166 (17) 0.0022 (17)
C12 0.052 (2) 0.044 (2) 0.040 (2) 0.0195 (18) 0.0113 (18) −0.0006 (17)
C6 0.045 (2) 0.045 (2) 0.056 (2) −0.0115 (17) 0.0177 (18) −0.0050 (18)
C10 0.071 (3) 0.036 (2) 0.053 (2) −0.0020 (19) 0.002 (2) 0.0001 (18)
C8 0.052 (3) 0.067 (3) 0.057 (3) −0.014 (2) 0.016 (2) 0.006 (2)
C4 0.080 (3) 0.031 (2) 0.079 (3) 0.0027 (19) 0.025 (3) −0.0044 (19)
C3 0.088 (4) 0.044 (3) 0.084 (3) 0.033 (2) 0.029 (3) −0.004 (2)

Geometric parameters (Å, °)

Cu1—N3 1.984 (3) C5—C4 1.371 (5)
Cu1—N1 2.012 (3) C5—C6 1.451 (5)
Cu1—N2 2.029 (3) O1—H1B 0.8200
Cu1—N4 2.072 (3) C2—C3 1.352 (6)
Cu1—Cl1 2.4316 (10) C2—H2A 0.9300
N2—C1 1.338 (4) C9—C8 1.354 (6)
N2—C5 1.340 (4) C9—C10 1.385 (6)
N3—C12 1.256 (5) C9—H9A 0.9300
N3—O2 1.341 (3) C7—C8 1.361 (5)
N4—C7 1.335 (4) C7—H7A 0.9300
N4—C11 1.350 (4) C12—H12A 0.9300
C1—C2 1.370 (5) C6—H6A 0.9300
C1—H1A 0.9300 C10—H10A 0.9300
N1—C6 1.258 (4) C8—H8A 0.9300
N1—O1 1.345 (3) C4—C3 1.371 (6)
C11—C10 1.375 (5) C4—H4A 0.9300
C11—C12 1.453 (5) C3—H3A 0.9300
N3—Cu1—N1 91.79 (14) C4—C5—C6 123.0 (4)
N3—Cu1—N2 168.29 (12) N1—O1—H1B 109.5
N1—Cu1—N2 79.19 (11) C3—C2—C1 118.4 (4)
N3—Cu1—N4 79.15 (12) C3—C2—H2A 120.8
N1—Cu1—N4 151.07 (12) C1—C2—H2A 120.8
N2—Cu1—N4 105.21 (11) C8—C9—C10 118.3 (4)
N3—Cu1—Cl1 94.60 (9) C8—C9—H9A 120.9
N1—Cu1—Cl1 107.40 (9) C10—C9—H9A 120.9
N2—Cu1—Cl1 95.22 (8) N4—C7—C8 124.0 (4)
N4—Cu1—Cl1 100.71 (8) N4—C7—H7A 118.0
C1—N2—C5 118.1 (3) C8—C7—H7A 118.0
C1—N2—Cu1 128.8 (2) N3—C12—C11 116.1 (3)
C5—N2—Cu1 112.8 (2) N3—C12—H12A 121.9
C12—N3—O2 120.3 (3) C11—C12—H12A 121.9
C12—N3—Cu1 117.1 (2) N1—C6—C5 115.7 (3)
O2—N3—Cu1 122.1 (2) N1—C6—H6A 122.2
C7—N4—C11 117.2 (3) C5—C6—H6A 122.2
C7—N4—Cu1 131.7 (2) C11—C10—C9 119.9 (4)
C11—N4—Cu1 110.9 (2) C11—C10—H10A 120.0
N2—C1—C2 122.9 (4) C9—C10—H10A 120.0
N2—C1—H1A 118.5 C9—C8—C7 119.2 (4)
C2—C1—H1A 118.5 C9—C8—H8A 120.4
C6—N1—O1 118.2 (3) C7—C8—H8A 120.4
C6—N1—Cu1 116.6 (2) C5—C4—C3 119.3 (4)
O1—N1—Cu1 125.2 (2) C5—C4—H4A 120.4
N4—C11—C10 121.4 (4) C3—C4—H4A 120.4
N4—C11—C12 115.3 (3) C2—C3—C4 119.8 (4)
C10—C11—C12 123.2 (3) C2—C3—H3A 120.1
N2—C5—C4 121.4 (4) C4—C3—H3A 120.1
N2—C5—C6 115.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1B···O2 0.82 1.70 2.488 (5) 162

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2064).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Afrati, T., Dendrinou-Samara, C., Zaleski, C. M., Kampf, J. W., Pecoraro, V. L. & Kessissoglou, D. P. (2005). Inorg. Chem. Commun.8, 1173–1176.
  3. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Korpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun.8, 1181–1184.
  5. Pearse, G. A., Raithby, P. R. & Lewis, J. (1989). Polyhedron, 8, 301–304.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stamatatos, T. C., Vlahopoulou, J. C., Sanakis, Y., Raptopoulou, C. P., Psycharis, V., Boudalis, A. K. & Perlepes, S. P. (2006). Inorg. Chem. Commun.9, 814–818.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014748/im2064sup1.cif

e-64-0m828-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014748/im2064Isup2.hkl

e-64-0m828-Isup2.hkl (114KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES