Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):o1114. doi: 10.1107/S1600536808014402

(−)-Kolavenic acid

Julio Zukerman-Schpector a,*, Lucas Sousa Madureira a, Gisele B Messiano b, Lucia M X Lopes b, Edward R T Tiekink c
PMCID: PMC2961406  PMID: 21202625

Abstract

In the two, almost identical, mol­ecules in the asymmetric unit of the title compound [systematic name: (E)-3-methyl-5-(1,2,4a,5-tetra­methyl-1,2,3,4,4a,7,8,8a-octa­hydro­naphthalen-1-yl)pent-2-enoic acid], C20H32O2, the rings are trans fused. The cyclo­hexane ring has a chair conformation and the cyclo­hexene ring a distorted half-boat conformation. The two independent mol­ecules are connected into a dimer via O—H⋯O hydrogen bonds. The dimers are associated into supra­molecular chains along c via C—H⋯O contacts.

Related literature

For related structures, see: Puliti & Mattia (2000). For related literature, see: Lopes et al. (1987); Bomm et al. (1999); Messiano et al. (2008); Nascimento et al. (2004). For ring structure analysis, see: Cremer & Pople (1975); Spek (2003).graphic file with name e-64-o1114-scheme1.jpg

Experimental

Crystal data

  • C20H32O2

  • M r = 304.46

  • Orthorhombic, Inline graphic

  • a = 12.5122 (3) Å

  • b = 15.5439 (4) Å

  • c = 19.1969 (4) Å

  • V = 3733.57 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 291 (2) K

  • 0.42 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 48366 measured reflections

  • 6240 independent reflections

  • 3146 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.134

  • S = 1.00

  • 6240 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2, COSMO and BIS (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014402/ng2455sup1.cif

e-64-o1114-sup1.cif (34KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014402/ng2455Isup2.hkl

e-64-o1114-Isup2.hkl (299.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O101—H101⋯O202 0.82 1.82 2.625 (3) 168
O201—H201⋯O102 0.82 1.90 2.700 (2) 164
C212—H21R⋯O202i 0.96 2.60 3.519 (4) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank FAPESP, CNPq and CAPES for financial support. Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for the collection of the intensity data.

supplementary crystallographic information

Comment

The title compound (I), Fig. 1, was studied as a part of an on-going screen of natural insecticides from Aristolochia species, which has become a promising route for the discovery of new compounds and/or botanical preparations which could be used in crop protection against Anticarsia gemmatalis H. (Lepidoptera: Noctuidae). Larvae of this insect represent the major defoliator pest of soybean crops in Brazil.

There are two almost identical independent molecules in the asymmetric unit, in fact superimposition of them, excluding H atoms, gives a rmsd of 0.016 Å (Spek, 2003). The major difference between the molecules is manifested in the relative orientations of the carboxylic acid residues so that in one molecule the carbonyl-O102 atom is syn to the methyl-C118 group whereas the opposite is true for the second independent molecule. In each molecule the rings are trans fused and the cyclohexane ring is in an almost undistorted chair conformation. The cyclohexene ring is in a distorted half-boat conformation, the ring-puckering parameters (Cremer & Pople, 1975) are q2 = 0.400 (3) Å (0.406 (3) Å for the second molecule), q3 = -0.341 (3) Å (-0.336 (3) Å), Q = 0.525 (2) ° (0.527 (2) °), and φ2 = 106.6 (4)° (107.3 (4) °). The absolute configuration was established based on the [αD] = -41.1° (c 1.0, CHCl3) and the results reported in Bomm et al. (1999).

The independent molecules in (I) are connected via cooperative O—H···O contacts that form the eight-membered {···H—O—C=O}2 synthon, Table 1. The resultant dimeric aggregates are linked into a supramolecular chain along the c-direction via C212—H21R···O202 contacts, Fig. 2.

Experimental

Compound (I), (-)-kolavenic acid, was obtained from the hexane extract of the roots of Aristolochia malmeana Hoehne (Aristolochiaceae). Colorless crystals were obtained from the slow evaporation of a MeOH solution of (I) held at 283 K; m.p. 370–371 K. NMR (CDCl3, p.p.m.): δ 0.93 (1H, t, w1/2 = 7.0 Hz, H-1a), 1.36 (1H, m, H-1b), 1.99 (1H, m, H-2a), 1.94 (1H, m, H-2b), 5.13 (1H, br s, H-3), 1.66 (1H, dt, J = 13.0, 3.0 Hz, H-6a), 1.12 (1H, ddd, J = 13.0, 12.0, 4.2 Hz, H-6b), 1.33 (1H, m, H-7a), 1.39 (1H, m, H-7b), 1.37 (1H, m, H-8), 1.27 (1H, dd, J = 12.0, 1.5 Hz, H-10), 1.34 (1H, ddd, J = 14.0, 13.0, 4.5 Hz, H-11a), 1.48 (1H, ddd, J = 14.0, 12.5, 5.0 Hz, H-11b), 1.97 (1H, td, J = 13.0, 4.5 Hz, H-12a), 1.90 (1H, ddd, J = 13.0, 12.5, 5.0 Hz, H-12b), 5.62 (1H, dq, J = 2.5, 1.0 Hz, H-14), 2.11 (3H, br d, J = 1.0 Hz, H-16), 0.76 (3H, d, J = 6.0 Hz, H-17), 1.53 (3H, br s, H-18), 0.94 (3H, s, H-19), 0.68 (3H, s, H-20). [αD] = -41.1° in agreement with Bomm et al. (1999) and Messiano et al. (2008).

Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were averaged in the final refinement. The H atoms were refined in the riding-model approximation with C—H = 0.93 - 0.98 Å and (0.82 for O—H), and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C and –O).

Figures

Fig. 1.

Fig. 1.

The molecular structures of the two independent molecules in (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

View of a supramolecular chain in (I) with O—H···O and C—H···O interactions shown as orange-dashed lines. Color code: O (red), N (blue), C (grey) & H (green).

Crystal data

C20H32O2 F000 = 1344
Mr = 304.46 Dx = 1.083 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9536 reflections
a = 12.5122 (3) Å θ = 2.3–21.8º
b = 15.5439 (4) Å µ = 0.07 mm1
c = 19.1969 (4) Å T = 291 (2) K
V = 3733.57 (15) Å3 Irregular, colourless
Z = 8 0.42 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 3146 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.052
Monochromator: graphite θmax = 30.5º
T = 291(2) K θmin = 2.7º
φ and ω scans h = −17→17
Absorption correction: none k = −22→21
48366 measured reflections l = −27→23
6240 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050   w = 1/[σ2(Fo2) + (0.0656P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.11 e Å3
6240 reflections Δρmin = −0.12 e Å3
407 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Friedel pairs were merged
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O101 1.0346 (2) 1.00268 (16) 0.40732 (10) 0.0971 (7)
H101 1.0583 1.0109 0.4466 0.117*
O102 0.92225 (17) 0.92145 (12) 0.46736 (8) 0.0785 (5)
C101 0.76320 (18) 0.77650 (14) 0.14588 (11) 0.0507 (5)
C102 0.65232 (18) 0.81476 (17) 0.12872 (11) 0.0595 (6)
H102 0.6514 0.8730 0.1484 0.071*
C103 0.63223 (19) 0.82452 (18) 0.05042 (12) 0.0629 (6)
H10C 0.6296 0.7679 0.0293 0.076*
H10D 0.5633 0.8517 0.0433 0.076*
C104 0.71754 (19) 0.87743 (17) 0.01459 (11) 0.0598 (6)
H10A 0.7174 0.9351 0.0338 0.072*
H10B 0.7009 0.8817 −0.0346 0.072*
C105 0.83006 (17) 0.83772 (14) 0.02341 (10) 0.0517 (5)
C106 0.9156 (2) 0.89798 (18) −0.00476 (12) 0.0668 (7)
C107 1.0092 (2) 0.90785 (19) 0.02659 (14) 0.0747 (8)
H107 1.0581 0.9448 0.0056 0.090*
C108 1.0430 (2) 0.86495 (19) 0.09252 (15) 0.0764 (8)
H10G 1.0494 0.9079 0.1290 0.092*
H10H 1.1128 0.8391 0.0858 0.092*
C109 0.96454 (18) 0.79603 (17) 0.11559 (13) 0.0628 (6)
H10E 0.9750 0.7837 0.1646 0.075*
H10F 0.9774 0.7436 0.0896 0.075*
C110 0.85005 (16) 0.82610 (14) 0.10350 (10) 0.0473 (5)
H110 0.8482 0.8847 0.1223 0.057*
C111 0.7674 (2) 0.67820 (15) 0.13196 (13) 0.0672 (7)
H11E 0.7390 0.6663 0.0865 0.101*
H11F 0.7256 0.6487 0.1665 0.101*
H11G 0.8401 0.6588 0.1343 0.101*
C112 0.5582 (2) 0.7661 (2) 0.16212 (15) 0.0902 (9)
H11N 0.5548 0.7089 0.1434 0.135*
H11O 0.4927 0.7958 0.1521 0.135*
H11P 0.5684 0.7632 0.2116 0.135*
C113 0.8360 (2) 0.75442 (18) −0.01978 (12) 0.0678 (7)
H11H 0.9004 0.7239 −0.0084 0.102*
H11I 0.8360 0.7685 −0.0685 0.102*
H11J 0.7753 0.7189 −0.0094 0.102*
C114 0.8941 (3) 0.9435 (2) −0.07248 (15) 0.1023 (11)
H11Q 0.9553 0.9772 −0.0852 0.153*
H11R 0.8331 0.9804 −0.0673 0.153*
H11S 0.8801 0.9018 −0.1082 0.153*
C115 0.7858 (2) 0.78741 (15) 0.22501 (11) 0.0609 (6)
H11A 0.7346 0.7525 0.2504 0.073*
H11B 0.8562 0.7642 0.2346 0.073*
C116 0.7812 (3) 0.87882 (18) 0.25429 (12) 0.0834 (9)
H11C 0.8247 0.9161 0.2253 0.100*
H11D 0.7081 0.8994 0.2519 0.100*
C117 0.8197 (3) 0.88539 (18) 0.32881 (11) 0.0705 (7)
C118 0.7538 (3) 0.8379 (2) 0.38179 (14) 0.0987 (10)
H11K 0.7705 0.8588 0.4276 0.148*
H11L 0.7695 0.7775 0.3792 0.148*
H11M 0.6793 0.8470 0.3724 0.148*
C119 0.9048 (3) 0.93132 (18) 0.34285 (12) 0.0740 (8)
H119 0.9387 0.9551 0.3043 0.089*
C120 0.9549 (2) 0.95094 (17) 0.41065 (12) 0.0661 (7)
O201 1.01800 (18) 0.96623 (14) 0.58806 (10) 0.0910 (6)
H201 1.0001 0.9486 0.5495 0.109*
O202 1.13450 (18) 1.03856 (14) 0.52400 (10) 0.0910 (6)
C201 1.19128 (18) 1.20921 (15) 0.85454 (11) 0.0546 (6)
C202 1.2484 (2) 1.15676 (16) 0.91200 (12) 0.0658 (7)
H202 1.2947 1.1154 0.8880 0.079*
C203 1.3211 (2) 1.21238 (19) 0.95685 (12) 0.0782 (8)
H20E 1.2778 1.2535 0.9823 0.094*
H20F 1.3571 1.1761 0.9906 0.094*
C204 1.4038 (2) 1.26039 (17) 0.91493 (12) 0.0706 (7)
H20A 1.4509 1.2192 0.8926 0.085*
H20B 1.4468 1.2952 0.9462 0.085*
C205 1.3545 (2) 1.31906 (15) 0.85873 (10) 0.0560 (6)
C206 1.4416 (2) 1.35422 (15) 0.81050 (13) 0.0636 (6)
C207 1.4261 (2) 1.36223 (17) 0.74262 (13) 0.0719 (7)
H207 1.4824 1.3844 0.7165 0.086*
C208 1.3270 (2) 1.33897 (19) 0.70427 (12) 0.0768 (8)
H20G 1.3420 1.2908 0.6737 0.092*
H20H 1.3054 1.3872 0.6755 0.092*
C209 1.2348 (2) 1.31491 (18) 0.75260 (12) 0.0658 (6)
H20C 1.1824 1.2814 0.7272 0.079*
H20D 1.2002 1.3667 0.7695 0.079*
C210 1.27730 (17) 1.26243 (14) 0.81438 (10) 0.0496 (5)
H210 1.3237 1.2190 0.7931 0.060*
C211 1.1011 (2) 1.2658 (2) 0.88417 (15) 0.0793 (8)
H21H 1.0777 1.3057 0.8492 0.119*
H21I 1.1270 1.2969 0.9239 0.119*
H21J 1.0422 1.2300 0.8979 0.119*
C212 1.1724 (3) 1.1040 (3) 0.95738 (18) 0.1120 (12)
H21Q 1.1314 1.1420 0.9864 0.168*
H21R 1.2129 1.0655 0.9861 0.168*
H21S 1.1250 1.0715 0.9281 0.168*
C213 1.3019 (3) 1.39861 (18) 0.89400 (14) 0.0816 (8)
H21E 1.3566 1.4348 0.9133 0.122*
H21F 1.2550 1.3797 0.9305 0.122*
H21G 1.2619 1.4304 0.8600 0.122*
C214 1.5467 (3) 1.3827 (2) 0.84228 (17) 0.0938 (10)
H21N 1.5892 1.4108 0.8075 0.141*
H21O 1.5844 1.3333 0.8596 0.141*
H21P 1.5330 1.4218 0.8799 0.141*
C215 1.1350 (2) 1.14633 (17) 0.80335 (13) 0.0666 (7)
H21A 1.0793 1.1168 0.8291 0.080*
H21B 1.0998 1.1808 0.7680 0.080*
C216 1.2006 (2) 1.07826 (18) 0.76594 (14) 0.0746 (7)
H21C 1.2620 1.1052 0.7441 0.089*
H21D 1.2267 1.0367 0.7996 0.089*
C217 1.1357 (2) 1.03233 (16) 0.71123 (14) 0.0678 (7)
C218 1.0479 (3) 0.9751 (2) 0.73784 (15) 0.1064 (12)
H21K 1.0457 0.9233 0.7107 0.160*
H21L 0.9807 1.0045 0.7341 0.160*
H21M 1.0613 0.9610 0.7857 0.160*
C219 1.1563 (2) 1.04597 (17) 0.64412 (14) 0.0721 (7)
H219 1.2155 1.0805 0.6353 0.087*
C220 1.1003 (2) 1.01506 (17) 0.58192 (14) 0.0679 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O101 0.1228 (18) 0.1026 (16) 0.0661 (11) −0.0288 (16) −0.0021 (12) 0.0042 (11)
O102 0.1089 (14) 0.0789 (12) 0.0478 (8) −0.0094 (11) −0.0006 (9) 0.0002 (8)
C101 0.0526 (13) 0.0479 (13) 0.0516 (11) 0.0024 (11) 0.0030 (9) −0.0041 (10)
C102 0.0501 (13) 0.0707 (16) 0.0576 (12) 0.0062 (13) 0.0043 (10) −0.0132 (11)
C103 0.0501 (13) 0.0779 (17) 0.0608 (12) 0.0097 (13) −0.0028 (10) −0.0154 (12)
C104 0.0632 (15) 0.0679 (16) 0.0484 (11) 0.0089 (13) −0.0080 (10) −0.0058 (11)
C105 0.0519 (13) 0.0542 (14) 0.0489 (10) −0.0026 (11) 0.0019 (9) −0.0062 (10)
C106 0.0736 (18) 0.0674 (17) 0.0595 (13) −0.0055 (14) 0.0091 (12) −0.0003 (11)
C107 0.0674 (18) 0.0759 (19) 0.0808 (17) −0.0213 (15) 0.0112 (14) 0.0013 (15)
C108 0.0547 (15) 0.087 (2) 0.0875 (18) −0.0099 (15) −0.0005 (13) −0.0076 (15)
C109 0.0517 (14) 0.0677 (17) 0.0690 (13) 0.0005 (13) −0.0041 (11) 0.0012 (12)
C110 0.0466 (12) 0.0445 (12) 0.0508 (10) 0.0026 (10) −0.0005 (9) −0.0047 (9)
C111 0.0730 (17) 0.0517 (15) 0.0769 (15) −0.0064 (13) 0.0081 (13) −0.0040 (12)
C112 0.0582 (16) 0.130 (3) 0.0824 (18) −0.0045 (18) 0.0165 (14) −0.0002 (18)
C113 0.0678 (16) 0.0763 (17) 0.0595 (13) −0.0024 (14) 0.0094 (12) −0.0217 (12)
C114 0.116 (3) 0.114 (3) 0.0773 (18) −0.026 (2) 0.0037 (17) 0.0291 (18)
C115 0.0730 (16) 0.0609 (15) 0.0486 (11) 0.0045 (13) −0.0012 (10) 0.0023 (10)
C116 0.134 (3) 0.0673 (17) 0.0486 (12) 0.0166 (18) −0.0167 (14) −0.0087 (11)
C117 0.103 (2) 0.0588 (16) 0.0491 (12) 0.0123 (17) −0.0046 (13) −0.0020 (11)
C118 0.115 (2) 0.126 (3) 0.0552 (14) −0.016 (2) 0.0099 (15) −0.0095 (16)
C119 0.117 (2) 0.0600 (16) 0.0451 (11) 0.0014 (18) 0.0042 (13) 0.0016 (11)
C120 0.092 (2) 0.0499 (14) 0.0563 (13) 0.0022 (15) 0.0011 (13) 0.0026 (11)
O201 0.1098 (16) 0.0939 (15) 0.0694 (11) −0.0434 (13) −0.0103 (11) −0.0026 (11)
O202 0.1104 (16) 0.0877 (14) 0.0749 (11) −0.0261 (13) 0.0126 (11) −0.0057 (10)
C201 0.0578 (13) 0.0531 (14) 0.0528 (11) 0.0057 (12) −0.0021 (10) 0.0010 (10)
C202 0.0770 (17) 0.0646 (16) 0.0557 (12) −0.0001 (14) −0.0019 (12) 0.0094 (11)
C203 0.101 (2) 0.088 (2) 0.0464 (11) 0.0010 (17) −0.0109 (13) 0.0033 (12)
C204 0.0850 (17) 0.0684 (16) 0.0584 (12) −0.0051 (15) −0.0223 (13) −0.0048 (12)
C205 0.0695 (15) 0.0471 (13) 0.0513 (10) 0.0029 (12) −0.0058 (11) −0.0102 (9)
C206 0.0709 (16) 0.0483 (14) 0.0717 (15) 0.0015 (13) −0.0016 (12) −0.0070 (11)
C207 0.0831 (19) 0.0599 (16) 0.0726 (16) −0.0003 (14) 0.0096 (14) 0.0064 (12)
C208 0.088 (2) 0.086 (2) 0.0563 (13) 0.0049 (17) −0.0013 (13) 0.0107 (13)
C209 0.0720 (16) 0.0679 (16) 0.0577 (13) 0.0086 (14) −0.0099 (11) 0.0063 (12)
C210 0.0562 (13) 0.0474 (13) 0.0452 (10) 0.0077 (11) −0.0029 (9) −0.0053 (9)
C211 0.0693 (16) 0.084 (2) 0.0841 (16) 0.0134 (16) 0.0101 (14) −0.0062 (15)
C212 0.103 (2) 0.129 (3) 0.105 (2) −0.019 (2) 0.0017 (19) 0.051 (2)
C213 0.104 (2) 0.0619 (16) 0.0795 (16) 0.0050 (16) 0.0102 (16) −0.0254 (13)
C214 0.091 (2) 0.085 (2) 0.105 (2) −0.0210 (19) −0.0075 (18) −0.0182 (18)
C215 0.0614 (15) 0.0675 (16) 0.0710 (14) −0.0013 (14) −0.0095 (12) −0.0035 (12)
C216 0.0775 (18) 0.0654 (17) 0.0807 (16) −0.0008 (15) −0.0161 (14) −0.0152 (13)
C217 0.0700 (16) 0.0535 (15) 0.0798 (16) −0.0062 (14) −0.0103 (13) −0.0049 (12)
C218 0.141 (3) 0.101 (2) 0.0775 (18) −0.054 (2) −0.020 (2) 0.0130 (17)
C219 0.0713 (17) 0.0640 (17) 0.0810 (16) −0.0178 (14) 0.0026 (14) −0.0170 (13)
C220 0.0780 (18) 0.0523 (15) 0.0736 (16) −0.0091 (14) 0.0035 (14) −0.0079 (12)

Geometric parameters (Å, °)

O101—C120 1.283 (3) O201—C220 1.285 (3)
O101—H101 0.8200 O201—H201 0.8200
O102—C120 1.250 (3) O202—C220 1.246 (3)
C101—C102 1.545 (3) C201—C211 1.540 (3)
C101—C111 1.552 (3) C201—C202 1.547 (3)
C101—C115 1.554 (3) C201—C215 1.555 (3)
C101—C110 1.561 (3) C201—C210 1.561 (3)
C102—C103 1.532 (3) C202—C203 1.522 (4)
C102—C112 1.540 (4) C202—C212 1.528 (4)
C102—H102 0.9800 C202—H202 0.9800
C103—C104 1.513 (4) C203—C204 1.509 (4)
C103—H10C 0.9700 C203—H20E 0.9700
C103—H10D 0.9700 C203—H20F 0.9700
C104—C105 1.546 (3) C204—C205 1.542 (3)
C104—H10A 0.9700 C204—H20A 0.9700
C104—H10B 0.9700 C204—H20B 0.9700
C105—C106 1.522 (4) C205—C206 1.531 (3)
C105—C113 1.539 (3) C205—C213 1.555 (3)
C105—C110 1.568 (3) C205—C210 1.560 (3)
C106—C107 1.325 (4) C206—C207 1.323 (3)
C106—C114 1.504 (4) C206—C214 1.516 (4)
C107—C108 1.492 (4) C207—C208 1.487 (4)
C107—H107 0.9300 C207—H207 0.9300
C108—C109 1.519 (4) C208—C209 1.526 (4)
C108—H10G 0.9700 C208—H20G 0.9700
C108—H10H 0.9700 C208—H20H 0.9700
C109—C110 1.525 (3) C209—C210 1.534 (3)
C109—H10E 0.9700 C209—H20C 0.9700
C109—H10F 0.9700 C209—H20D 0.9700
C110—H110 0.9800 C210—H210 0.9800
C111—H11E 0.9600 C211—H21H 0.9600
C111—H11F 0.9600 C211—H21I 0.9600
C111—H11G 0.9600 C211—H21J 0.9600
C112—H11N 0.9600 C212—H21Q 0.9600
C112—H11O 0.9600 C212—H21R 0.9600
C112—H11P 0.9600 C212—H21S 0.9600
C113—H11H 0.9600 C213—H21E 0.9600
C113—H11I 0.9600 C213—H21F 0.9600
C113—H11J 0.9600 C213—H21G 0.9600
C114—H11Q 0.9600 C214—H21N 0.9600
C114—H11R 0.9600 C214—H21O 0.9600
C114—H11S 0.9600 C214—H21P 0.9600
C115—C116 1.529 (4) C215—C216 1.519 (3)
C115—H11A 0.9700 C215—H21A 0.9700
C115—H11B 0.9700 C215—H21B 0.9700
C116—C117 1.513 (3) C216—C217 1.507 (3)
C116—H11C 0.9700 C216—H21C 0.9700
C116—H11D 0.9700 C216—H21D 0.9700
C117—C119 1.310 (4) C217—C219 1.331 (4)
C117—C118 1.503 (4) C217—C218 1.503 (4)
C118—H11K 0.9600 C218—H21K 0.9600
C118—H11L 0.9600 C218—H21L 0.9600
C118—H11M 0.9600 C218—H21M 0.9600
C119—C120 1.476 (4) C219—C220 1.465 (4)
C119—H119 0.9300 C219—H219 0.9300
C120—O101—H101 109.5 C220—O201—H201 109.5
C102—C101—C111 111.9 (2) C211—C201—C202 112.09 (19)
C102—C101—C115 109.25 (18) C211—C201—C215 105.1 (2)
C111—C101—C115 105.63 (19) C202—C201—C215 109.19 (19)
C102—C101—C110 108.90 (17) C211—C201—C210 112.66 (19)
C111—C101—C110 111.90 (18) C202—C201—C210 108.25 (18)
C115—C101—C110 109.20 (18) C215—C201—C210 109.47 (18)
C103—C102—C112 109.4 (2) C203—C202—C212 110.8 (2)
C103—C102—C101 113.24 (18) C203—C202—C201 112.3 (2)
C112—C102—C101 114.1 (2) C212—C202—C201 113.7 (2)
C103—C102—H102 106.5 C203—C202—H202 106.5
C112—C102—H102 106.5 C212—C202—H202 106.5
C101—C102—H102 106.5 C201—C202—H202 106.5
C104—C103—C102 112.6 (2) C204—C203—C202 112.92 (19)
C104—C103—H10C 109.1 C204—C203—H20E 109.0
C102—C103—H10C 109.1 C202—C203—H20E 109.0
C104—C103—H10D 109.1 C204—C203—H20F 109.0
C102—C103—H10D 109.1 C202—C203—H20F 109.0
H10C—C103—H10D 107.8 H20E—C203—H20F 107.8
C103—C104—C105 112.06 (19) C203—C204—C205 113.0 (2)
C103—C104—H10A 109.2 C203—C204—H20A 109.0
C105—C104—H10A 109.2 C205—C204—H20A 109.0
C103—C104—H10B 109.2 C203—C204—H20B 109.0
C105—C104—H10B 109.2 C205—C204—H20B 109.0
H10A—C104—H10B 107.9 H20A—C204—H20B 107.8
C106—C105—C113 107.00 (18) C206—C205—C204 110.4 (2)
C106—C105—C104 110.85 (19) C206—C205—C213 106.3 (2)
C113—C105—C104 108.70 (18) C204—C205—C213 109.56 (19)
C106—C105—C110 107.88 (18) C206—C205—C210 108.19 (17)
C113—C105—C110 115.05 (19) C204—C205—C210 107.22 (19)
C104—C105—C110 107.37 (16) C213—C205—C210 115.1 (2)
C107—C106—C114 119.8 (3) C207—C206—C214 119.7 (3)
C107—C106—C105 122.1 (2) C207—C206—C205 121.7 (2)
C114—C106—C105 118.1 (2) C214—C206—C205 118.6 (2)
C106—C107—C108 125.7 (2) C206—C207—C208 125.9 (3)
C106—C107—H107 117.1 C206—C207—H207 117.0
C108—C107—H107 117.1 C208—C207—H207 117.0
C107—C108—C109 112.3 (2) C207—C208—C209 112.9 (2)
C107—C108—H10G 109.2 C207—C208—H20G 109.0
C109—C108—H10G 109.2 C209—C208—H20G 109.0
C107—C108—H10H 109.2 C207—C208—H20H 109.0
C109—C108—H10H 109.2 C209—C208—H20H 109.0
H10G—C108—H10H 107.9 H20G—C208—H20H 107.8
C108—C109—C110 110.3 (2) C208—C209—C210 109.8 (2)
C108—C109—H10E 109.6 C208—C209—H20C 109.7
C110—C109—H10E 109.6 C210—C209—H20C 109.7
C108—C109—H10F 109.6 C208—C209—H20D 109.7
C110—C109—H10F 109.6 C210—C209—H20D 109.7
H10E—C109—H10F 108.1 H20C—C209—H20D 108.2
C109—C110—C101 115.04 (18) C209—C210—C205 109.65 (19)
C109—C110—C105 109.55 (17) C209—C210—C201 115.13 (18)
C101—C110—C105 117.18 (17) C205—C210—C201 117.16 (17)
C109—C110—H110 104.5 C209—C210—H210 104.4
C101—C110—H110 104.5 C205—C210—H210 104.4
C105—C110—H110 104.5 C201—C210—H210 104.4
C101—C111—H11E 109.5 C201—C211—H21H 109.5
C101—C111—H11F 109.5 C201—C211—H21I 109.5
H11E—C111—H11F 109.5 H21H—C211—H21I 109.5
C101—C111—H11G 109.5 C201—C211—H21J 109.5
H11E—C111—H11G 109.5 H21H—C211—H21J 109.5
H11F—C111—H11G 109.5 H21I—C211—H21J 109.5
C102—C112—H11N 109.5 C202—C212—H21Q 109.5
C102—C112—H11O 109.5 C202—C212—H21R 109.5
H11N—C112—H11O 109.5 H21Q—C212—H21R 109.5
C102—C112—H11P 109.5 C202—C212—H21S 109.5
H11N—C112—H11P 109.5 H21Q—C212—H21S 109.5
H11O—C112—H11P 109.5 H21R—C212—H21S 109.5
C105—C113—H11H 109.5 C205—C213—H21E 109.5
C105—C113—H11I 109.5 C205—C213—H21F 109.5
H11H—C113—H11I 109.5 H21E—C213—H21F 109.5
C105—C113—H11J 109.5 C205—C213—H21G 109.5
H11H—C113—H11J 109.5 H21E—C213—H21G 109.5
H11I—C113—H11J 109.5 H21F—C213—H21G 109.5
C106—C114—H11Q 109.5 C206—C214—H21N 109.5
C106—C114—H11R 109.5 C206—C214—H21O 109.5
H11Q—C114—H11R 109.5 H21N—C214—H21O 109.5
C106—C114—H11S 109.5 C206—C214—H21P 109.5
H11Q—C114—H11S 109.5 H21N—C214—H21P 109.5
H11R—C114—H11S 109.5 H21O—C214—H21P 109.5
C116—C115—C101 116.98 (19) C216—C215—C201 119.5 (2)
C116—C115—H11A 108.1 C216—C215—H21A 107.5
C101—C115—H11A 108.1 C201—C215—H21A 107.5
C116—C115—H11B 108.1 C216—C215—H21B 107.5
C101—C115—H11B 108.1 C201—C215—H21B 107.5
H11A—C115—H11B 107.3 H21A—C215—H21B 107.0
C117—C116—C115 113.5 (2) C217—C216—C215 111.6 (2)
C117—C116—H11C 108.9 C217—C216—H21C 109.3
C115—C116—H11C 108.9 C215—C216—H21C 109.3
C117—C116—H11D 108.9 C217—C216—H21D 109.3
C115—C116—H11D 108.9 C215—C216—H21D 109.3
H11C—C116—H11D 107.7 H21C—C216—H21D 108.0
C119—C117—C118 125.1 (2) C219—C217—C218 124.4 (2)
C119—C117—C116 119.3 (3) C219—C217—C216 119.6 (2)
C118—C117—C116 115.6 (3) C218—C217—C216 115.9 (2)
C117—C118—H11K 109.5 C217—C218—H21K 109.5
C117—C118—H11L 109.5 C217—C218—H21L 109.5
H11K—C118—H11L 109.5 H21K—C218—H21L 109.5
C117—C118—H11M 109.5 C217—C218—H21M 109.5
H11K—C118—H11M 109.5 H21K—C218—H21M 109.5
H11L—C118—H11M 109.5 H21L—C218—H21M 109.5
C117—C119—C120 129.7 (2) C217—C219—C220 130.1 (3)
C117—C119—H119 115.1 C217—C219—H219 115.0
C120—C119—H119 115.1 C220—C219—H219 115.0
O102—C120—O101 121.8 (2) O202—C220—O201 122.0 (2)
O102—C120—C119 123.6 (3) O202—C220—C219 117.8 (2)
O101—C120—C119 114.6 (2) O201—C220—C219 120.1 (2)
C111—C101—C102—C103 −75.5 (3) C211—C201—C202—C203 −73.9 (3)
C115—C101—C102—C103 167.9 (2) C215—C201—C202—C203 170.1 (2)
C110—C101—C102—C103 48.7 (3) C210—C201—C202—C203 51.0 (3)
C111—C101—C102—C112 50.5 (3) C211—C201—C202—C212 52.9 (3)
C115—C101—C102—C112 −66.1 (3) C215—C201—C202—C212 −63.1 (3)
C110—C101—C102—C112 174.7 (2) C210—C201—C202—C212 177.8 (2)
C112—C102—C103—C104 175.9 (2) C212—C202—C203—C204 175.3 (3)
C101—C102—C103—C104 −55.6 (3) C201—C202—C203—C204 −56.3 (3)
C102—C103—C104—C105 59.0 (3) C202—C203—C204—C205 57.8 (3)
C103—C104—C105—C106 −172.56 (19) C203—C204—C205—C206 −170.7 (2)
C103—C104—C105—C113 70.1 (2) C203—C204—C205—C213 72.6 (3)
C103—C104—C105—C110 −55.0 (2) C203—C204—C205—C210 −53.0 (3)
C113—C105—C106—C107 −100.2 (3) C204—C205—C206—C207 141.0 (2)
C104—C105—C106—C107 141.4 (3) C213—C205—C206—C207 −100.2 (3)
C110—C105—C106—C107 24.1 (3) C210—C205—C206—C207 24.0 (3)
C113—C105—C106—C114 76.4 (3) C204—C205—C206—C214 −40.7 (3)
C104—C105—C106—C114 −42.0 (3) C213—C205—C206—C214 78.1 (3)
C110—C105—C106—C114 −159.3 (2) C210—C205—C206—C214 −157.8 (2)
C114—C106—C107—C108 −178.1 (3) C214—C206—C207—C208 −178.7 (3)
C105—C106—C107—C108 −1.5 (4) C205—C206—C207—C208 −0.4 (4)
C106—C107—C108—C109 9.1 (4) C206—C207—C208—C209 7.9 (4)
C107—C108—C109—C110 −40.1 (3) C207—C208—C209—C210 −39.0 (3)
C108—C109—C110—C101 −161.0 (2) C208—C209—C210—C205 64.0 (3)
C108—C109—C110—C105 64.5 (3) C208—C209—C210—C201 −161.3 (2)
C102—C101—C110—C109 179.40 (19) C206—C205—C210—C209 −54.8 (2)
C111—C101—C110—C109 −56.4 (3) C204—C205—C210—C209 −173.93 (19)
C115—C101—C110—C109 60.2 (2) C213—C205—C210—C209 63.9 (3)
C102—C101—C110—C105 −49.7 (2) C206—C205—C210—C201 171.57 (18)
C111—C101—C110—C105 74.5 (2) C204—C205—C210—C201 52.4 (3)
C115—C101—C110—C105 −168.90 (19) C213—C205—C210—C201 −69.7 (3)
C106—C105—C110—C109 −54.5 (2) C211—C201—C210—C209 −58.6 (3)
C113—C105—C110—C109 64.8 (2) C202—C201—C210—C209 176.90 (19)
C104—C105—C110—C109 −174.01 (18) C215—C201—C210—C209 58.0 (2)
C106—C105—C110—C101 172.11 (18) C211—C201—C210—C205 72.6 (2)
C113—C105—C110—C101 −68.6 (2) C202—C201—C210—C205 −52.0 (2)
C104—C105—C110—C101 52.6 (2) C215—C201—C210—C205 −170.88 (19)
C102—C101—C115—C116 −56.7 (3) C211—C201—C215—C216 −178.0 (2)
C111—C101—C115—C116 −177.1 (2) C202—C201—C215—C216 −57.6 (3)
C110—C101—C115—C116 62.3 (3) C210—C201—C215—C216 60.8 (3)
C101—C115—C116—C117 −171.6 (2) C201—C215—C216—C217 −171.8 (2)
C115—C116—C117—C119 116.5 (3) C215—C216—C217—C219 109.5 (3)
C115—C116—C117—C118 −64.2 (4) C215—C216—C217—C218 −68.7 (3)
C118—C117—C119—C120 −2.4 (5) C218—C217—C219—C220 3.3 (5)
C116—C117—C119—C120 176.8 (3) C216—C217—C219—C220 −174.7 (3)
C117—C119—C120—O102 2.9 (5) C217—C219—C220—O202 178.5 (3)
C117—C119—C120—O101 −175.8 (3) C217—C219—C220—O201 −0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O101—H101···O202 0.82 1.82 2.625 (3) 168
O201—H201···O102 0.82 1.90 2.700 (2) 164
C212—H21R···O202i 0.96 2.60 3.519 (4) 159

Symmetry codes: (i) −x+5/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2455).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bomm, M. D., Zukerman-Schpector, J. & Lopes, L. M. X. (1999). Phytochemistry, 50, 455–461.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2006). APEX2, COSMO, BIS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Lopes, L. M. X., Bolzani, V. da S. & Trevisan, L. M. V. (1987). Phytochemistry, 26, 2781–2784.
  8. Messiano, G. B., Vieira, L., Machado, M. B., Lopes, L. M. X., De Bortoli, S. A. & Zukerman-Schpector, J. (2008). J. Agric. Food Chem.56, 2655–2659. [DOI] [PubMed]
  9. Nascimento, I. R., Murata, A. T., Bortoli, S. A. & Lopes, L. M. X. (2004). Pest Manag. Sci.60, 413–416. [DOI] [PubMed]
  10. Puliti, R. & Mattia, C. A. (2000). J. Mol. Struct.516, 31–41.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014402/ng2455sup1.cif

e-64-o1114-sup1.cif (34KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014402/ng2455Isup2.hkl

e-64-o1114-Isup2.hkl (299.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES