Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1052. doi: 10.1107/S160053680801009X

(S)-N-(1-Hydroxy­methyl-2-methyl­prop­yl)-2-methoxy­benzamide

Jihong Li a, Wenhai Wang a, Jingbo Lan a,*, Jingsong You a
PMCID: PMC2961408  PMID: 21202571

Abstract

The title compound, C13H19NO3, is an important synthetic inter­mediate. Weak O—H⋯O and N—H⋯O hydrogen bonds enhance the stability of the crystal structure.

Related literature

For related literature, see: Ma & You (2007); Rechavi & Lemaire (2002).graphic file with name e-64-o1052-scheme1.jpg

Experimental

Crystal data

  • C13H19NO3

  • M r = 237.29

  • Orthorhombic, Inline graphic

  • a = 9.015 (4) Å

  • b = 10.386 (4) Å

  • c = 14.005 (4) Å

  • V = 1311.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.50 × 0.44 × 0.40 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1457 measured reflections

  • 1397 independent reflections

  • 848 reflections with I > 2σ(I)

  • R int = 0.010

  • 3 standard reflections every 120 reflections intensity decay: 0.4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.136

  • S = 1.02

  • 1397 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801009X/er2052sup1.cif

e-64-o1052-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801009X/er2052Isup2.hkl

e-64-o1052-Isup2.hkl (69KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 2.00 2.806 (4) 170
N1—H1N1⋯O1 0.86 1.96 2.656 (4) 137

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Oxazoline ligands have been proved to be a class of chiral ligands, being capable of forming a broad variety of metal complexes that are capable of catalyzing a great number of reactions with excellent enantioselectivity (Rechavi & Lemaire, 2002). It is believed that the oxazoline ring can be modified structurally by replacing the O atom with a substituted N atom, leading to new types of imidazoline ligands (Ma & You, 2007). However, all those ligands can prepared by this compound as an intermediate. Herein, we report the synthesis and structure of the title compound (I).

As shown in Fig. 1, there is a chiral center at C9 derived from L-valinol. The C—N bond lengths are 1.318 (4) Å and 1.463 (4) Å, and the C8—N1—C9 angle is 125.3 (3) °. A combination of O—H···O and N—H···O hydrogen bonds interactions provide packing forces in the crystal structure of the title compound.

Experimental

NaH (8.7 g, 60%, 0.216 mol) was added portionwise to a stirred solution of L-valinol (22.1 g, 0.215 mol) in dry THF (120 ml). The mixture was stirred at ambient temperature for 1 h. To this solution was added 2-Methoxy-benzoic acid methyl ester (17.8 g, 0.107 mol) dissolved in THF (50 ml). The mixture was refluxed for 12 h under nitrogen, quenched with H2O (10 ml) and concentrated by evaporation of the solvent. The residue was dissolved in CH2Cl2 (100 ml), washed with H2O, brine, and dried over MgSO4. And then removal of the solvent in vacuo gave a white solid, which was recrystallized from ethyl acetate and petroleum ether to afford the title compound as white crystals (22.8 g, 90%).

Refinement

H atoms were positioned geometrically and refined in the riding model approximation with O—H = 0.82 Å, N—H = 0.86 Å, and C—H = 0.93, 0.96, 0.97 or 0.98 Å. The Uiso(H) = 1.5 Ueq(C) for the CH3 while it was set to 1.2 Ueq(C,N,O) for all other H atoms. Due to abscence of significant anomalous dispersion effects, the reflection data were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.

Crystal data

C13H19NO3 F000 = 512
Mr = 237.29 Dx = 1.202 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 9.015 (4) Å θ = 4.5–6.7º
b = 10.386 (4) Å µ = 0.09 mm1
c = 14.005 (4) Å T = 291 (2) K
V = 1311.3 (9) Å3 Block, colourless
Z = 4 0.50 × 0.44 × 0.40 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.010
Radiation source: fine-focus sealed tube θmax = 25.5º
Monochromator: graphite θmin = 2.4º
T = 291(2) K h = −3→10
ω/2θ scans k = −3→12
Absorption correction: none l = −5→16
1457 measured reflections 3 standard reflections
1397 independent reflections every 120 reflections
848 reflections with I > 2σ(I) intensity decay: 0.4%

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045   w = 1/[σ2(Fo2) + (0.0778P)2 + 0.0096P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.21 e Å3
1397 reflections Δρmin = −0.14 e Å3
164 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.069 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1432 (3) 0.3872 (3) 0.16126 (19) 0.0666 (8)
O2 0.5192 (3) 0.3286 (3) −0.00264 (18) 0.0703 (8)
O3 0.2632 (4) 0.0046 (3) −0.0111 (2) 0.0810 (10)
H3 0.1945 0.0562 −0.0140 0.097*
N1 0.3536 (3) 0.2340 (2) 0.0926 (2) 0.0487 (8)
H1N1 0.2711 0.2433 0.1227 0.058*
C1 0.1842 (4) 0.4786 (3) 0.0963 (3) 0.0514 (9)
C2 0.1074 (5) 0.5935 (4) 0.0851 (3) 0.0709 (12)
H2 0.0240 0.6099 0.1223 0.085*
C3 0.1535 (6) 0.6826 (4) 0.0201 (4) 0.0878 (16)
H3A 0.1009 0.7591 0.0133 0.105*
C4 0.2760 (6) 0.6610 (4) −0.0355 (4) 0.0929 (18)
H4 0.3078 0.7226 −0.0791 0.112*
C5 0.3519 (5) 0.5457 (4) −0.0255 (3) 0.0745 (13)
H5 0.4337 0.5300 −0.0642 0.089*
C6 0.3096 (4) 0.4533 (3) 0.0402 (3) 0.0489 (9)
C7 0.0018 (6) 0.3961 (7) 0.2048 (3) 0.109 (2)
H7A −0.0038 0.4739 0.2416 0.163*
H7B −0.0130 0.3233 0.2460 0.163*
H7C −0.0735 0.3970 0.1564 0.163*
C8 0.4020 (4) 0.3328 (3) 0.0425 (2) 0.0459 (9)
C9 0.4288 (4) 0.1097 (3) 0.1012 (2) 0.0456 (8)
H9 0.5050 0.1060 0.0514 0.055*
C10 0.3202 (5) 0.0025 (3) 0.0824 (3) 0.0609 (10)
H10A 0.3691 −0.0794 0.0932 0.073*
H10B 0.2387 0.0091 0.1273 0.073*
C11 0.5075 (5) 0.0978 (4) 0.1981 (3) 0.0632 (11)
H11 0.5515 0.0115 0.2002 0.076*
C12 0.6339 (6) 0.1925 (5) 0.2074 (4) 0.0939 (16)
H12A 0.5957 0.2787 0.2045 0.141*
H12B 0.7031 0.1794 0.1562 0.141*
H12C 0.6832 0.1796 0.2674 0.141*
C13 0.4068 (6) 0.1084 (6) 0.2833 (3) 0.107 (2)
H13A 0.4630 0.0946 0.3406 0.160*
H13B 0.3299 0.0447 0.2788 0.160*
H13C 0.3631 0.1926 0.2849 0.160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0560 (16) 0.0735 (18) 0.0704 (16) 0.0177 (16) 0.0102 (13) 0.0020 (15)
O2 0.0553 (16) 0.0652 (18) 0.0903 (18) −0.0022 (15) 0.0249 (16) 0.0137 (16)
O3 0.072 (2) 0.071 (2) 0.099 (2) 0.0007 (16) −0.0180 (18) −0.0113 (17)
N1 0.0369 (15) 0.0481 (16) 0.0610 (17) 0.0057 (15) 0.0078 (14) 0.0039 (14)
C1 0.050 (2) 0.046 (2) 0.058 (2) −0.0001 (18) −0.0117 (19) −0.0054 (18)
C2 0.064 (3) 0.060 (3) 0.089 (3) 0.015 (2) −0.016 (2) −0.019 (2)
C3 0.070 (3) 0.048 (2) 0.146 (4) 0.002 (2) −0.043 (3) 0.008 (3)
C4 0.067 (3) 0.059 (3) 0.152 (5) −0.011 (3) −0.030 (3) 0.047 (3)
C5 0.053 (2) 0.066 (2) 0.104 (3) −0.010 (2) −0.011 (2) 0.031 (3)
C6 0.044 (2) 0.0442 (18) 0.059 (2) −0.0051 (17) −0.0149 (17) 0.0013 (17)
C7 0.077 (3) 0.156 (6) 0.094 (3) 0.036 (4) 0.030 (3) 0.020 (4)
C8 0.037 (2) 0.046 (2) 0.054 (2) −0.0041 (17) −0.0023 (16) 0.0044 (18)
C9 0.0387 (18) 0.0447 (19) 0.0534 (19) 0.0069 (17) 0.0040 (15) −0.0004 (17)
C10 0.053 (2) 0.050 (2) 0.080 (3) 0.0044 (19) 0.000 (2) 0.004 (2)
C11 0.062 (3) 0.061 (3) 0.067 (2) 0.016 (2) −0.009 (2) 0.011 (2)
C12 0.096 (3) 0.093 (3) 0.093 (3) 0.000 (3) −0.037 (3) −0.011 (3)
C13 0.120 (4) 0.146 (5) 0.054 (2) 0.031 (5) 0.004 (3) 0.016 (3)

Geometric parameters (Å, °)

O1—C1 1.365 (4) C6—C8 1.504 (5)
O1—C7 1.416 (5) C7—H7A 0.9600
O2—C8 1.232 (4) C7—H7B 0.9600
O3—C10 1.406 (5) C7—H7C 0.9600
O3—H3 0.8200 C9—C10 1.506 (5)
N1—C8 1.318 (4) C9—C11 1.537 (5)
N1—C9 1.463 (4) C9—H9 0.9800
N1—H1N1 0.8600 C10—H10A 0.9700
C1—C2 1.389 (5) C10—H10B 0.9700
C1—C6 1.402 (5) C11—C13 1.503 (6)
C2—C3 1.363 (6) C11—C12 1.511 (6)
C2—H2 0.9300 C11—H11 0.9800
C3—C4 1.369 (7) C12—H12A 0.9600
C3—H3A 0.9300 C12—H12B 0.9600
C4—C5 1.386 (6) C12—H12C 0.9600
C4—H4 0.9300 C13—H13A 0.9600
C5—C6 1.383 (5) C13—H13B 0.9600
C5—H5 0.9300 C13—H13C 0.9600
C1—O1—C7 119.1 (4) N1—C8—C6 118.4 (3)
C10—O3—H3 109.5 N1—C9—C10 109.7 (3)
C8—N1—C9 125.3 (3) N1—C9—C11 111.0 (3)
C8—N1—H1N1 117.4 C10—C9—C11 113.3 (3)
C9—N1—H1N1 117.4 N1—C9—H9 107.5
O1—C1—C2 122.5 (4) C10—C9—H9 107.5
O1—C1—C6 117.5 (3) C11—C9—H9 107.5
C2—C1—C6 120.0 (4) O3—C10—C9 112.9 (3)
C3—C2—C1 120.4 (4) O3—C10—H10A 109.0
C3—C2—H2 119.8 C9—C10—H10A 109.0
C1—C2—H2 119.8 O3—C10—H10B 109.0
C2—C3—C4 121.0 (4) C9—C10—H10B 109.0
C2—C3—H3A 119.5 H10A—C10—H10B 107.8
C4—C3—H3A 119.5 C13—C11—C12 109.8 (4)
C3—C4—C5 118.8 (4) C13—C11—C9 114.6 (3)
C3—C4—H4 120.6 C12—C11—C9 111.8 (3)
C5—C4—H4 120.6 C13—C11—H11 106.7
C6—C5—C4 122.0 (5) C12—C11—H11 106.7
C6—C5—H5 119.0 C9—C11—H11 106.7
C4—C5—H5 119.0 C11—C12—H12A 109.5
C5—C6—C1 117.7 (4) C11—C12—H12B 109.5
C5—C6—C8 116.0 (3) H12A—C12—H12B 109.5
C1—C6—C8 126.2 (3) C11—C12—H12C 109.5
O1—C7—H7A 109.5 H12A—C12—H12C 109.5
O1—C7—H7B 109.5 H12B—C12—H12C 109.5
H7A—C7—H7B 109.5 C11—C13—H13A 109.5
O1—C7—H7C 109.5 C11—C13—H13B 109.5
H7A—C7—H7C 109.5 H13A—C13—H13B 109.5
H7B—C7—H7C 109.5 C11—C13—H13C 109.5
O2—C8—N1 122.0 (3) H13A—C13—H13C 109.5
O2—C8—C6 119.6 (3) H13B—C13—H13C 109.5
C7—O1—C1—C2 13.4 (5) C9—N1—C8—C6 179.2 (3)
C7—O1—C1—C6 −167.0 (4) C5—C6—C8—O2 9.9 (5)
O1—C1—C2—C3 179.3 (3) C1—C6—C8—O2 −171.7 (3)
C6—C1—C2—C3 −0.3 (6) C5—C6—C8—N1 −169.6 (3)
C1—C2—C3—C4 −0.0 (6) C1—C6—C8—N1 8.8 (5)
C2—C3—C4—C5 0.9 (7) C8—N1—C9—C10 −130.9 (4)
C3—C4—C5—C6 −1.5 (7) C8—N1—C9—C11 103.2 (4)
C4—C5—C6—C1 1.2 (6) N1—C9—C10—O3 63.2 (4)
C4—C5—C6—C8 179.7 (4) C11—C9—C10—O3 −172.2 (3)
O1—C1—C6—C5 −179.8 (3) N1—C9—C11—C13 59.7 (4)
C2—C1—C6—C5 −0.2 (5) C10—C9—C11—C13 −64.2 (5)
O1—C1—C6—C8 1.8 (5) N1—C9—C11—C12 −66.1 (4)
C2—C1—C6—C8 −178.6 (3) C10—C9—C11—C12 170.0 (3)
C9—N1—C8—O2 −0.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.82 2.00 2.806 (4) 170
N1—H1N1···O1 0.86 1.96 2.656 (4) 137

Symmetry codes: (i) x−1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2052).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  3. Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.
  4. Ma, K. & You, J. (2007). Chem. Eur. J.13, 1863–1871.
  5. Rechavi, D. & Lemaire, M. (2002). Chem. Rev.102, 3467–3494. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801009X/er2052sup1.cif

e-64-o1052-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801009X/er2052Isup2.hkl

e-64-o1052-Isup2.hkl (69KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES