Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):m824. doi: 10.1107/S1600536808014293

trans-Bis(1H-indole-3-carbaldehyde thio­semicarbazonato-κ2 N 1,S)nickel(II)

Mohd Razali Rizal a, Hapipah M Ali a, Seik Weng Ng a,*
PMCID: PMC2961409  PMID: 21202507

Abstract

The Ni atom in the centrosymmetric title compound, [Ni(C10H9N4S)2], is N,S-chelated by the deprotonated Schiff bases in a square-planar geometry. The –CH=N—N=C(S)—NH2 frament is planar. Adjacent mol­ecules are linked by hydrogen bonds between the indolyl –NH (donor) site and the double-bond =N– (acceptor) site of an adjacent mol­ecule, forming a layer motif.

Related literature

For the structure of the neutral Schiff base, see: Rizal et al. (2008). For background literature on the medicinal activity of metal complexes of the Schiff base and related compounds, see: Husain et al. (2007); Wilson et al. (2005).graphic file with name e-64-0m824-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H9N4S)2]

  • M r = 493.25

  • Monoclinic, Inline graphic

  • a = 10.4388 (3) Å

  • b = 5.2604 (1) Å

  • c = 19.1122 (5) Å

  • β = 104.803 (2)°

  • V = 1014.66 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 (2) K

  • 0.14 × 0.04 × 0.01 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.851, T max = 0.988

  • 12357 measured reflections

  • 2326 independent reflections

  • 1774 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.081

  • S = 1.02

  • 2326 reflections

  • 154 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014293/sg2241sup1.cif

e-64-0m824-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014293/sg2241Isup2.hkl

e-64-0m824-Isup2.hkl (114.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—N2 1.918 (2)
Ni1—S1 2.1669 (6)
N2—Ni1—S1 85.72 (6)
N2—Ni1—S1i 94.28 (6)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3ii 0.88 (3) 2.06 (2) 2.876 (3) 155 (3)

Symmetry code: (ii) Inline graphic.

Acknowledgments

We thank the Science Fund (12–02-03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

A previous study reports the structure of 1H-indole-3-carboxaldehyde thiosemicarbazone (Rizal et al., 2008). The compound in its deprotonated form can function as a bidentate chelate, and this is confirmed in the present nickel(II) derivative (Scheme I, Fig. 1). The metal center lies on a center-of-inversion in a square planar coordination geometry. Adjacent molecules are linked by hydrogen bonds between the indolyl –NH (donor) site and the double-bond =N– (acceptor) site of an adjacent molecule to form a layer motif (Fig. 2).

Experimental

Nickel acetate tetrahydrate (0.06 g,0.22 mmol) and 1H-indole-3-carboxaldehyde thiosemicarbazone (0.10 g, 0.44 mmol), ethanol (4 ml) and water (10 ml) were sealed in a 15-ml, Teflon-lined, Parr bomb. The bomb was heated at 383 K for 2 days. The bomb when cooled to room temperature over a day to give orange plates.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The nitrogen-bound H-atoms were located in a difference Fourier map, and were refined with an N–H distance restraint of 0.88±0.01 Å; their temperature factors were freely refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of Ni(C10H9N4S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies on a center-of-inversion. Unlabeled atoms are related to the labeled ones by this symmetry element.

Fig. 2.

Fig. 2.

OLEX (Dolomanov et al., 2003) representation of the hydrogen-bonded layer motif.

Crystal data

[Ni(C10H9N4S)2] F000 = 508
Mr = 493.25 Dx = 1.614 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1799 reflections
a = 10.4388 (3) Å θ = 2.6–24.7º
b = 5.2604 (1) Å µ = 1.19 mm1
c = 19.1122 (5) Å T = 100 (2) K
β = 104.803 (2)º Plate, orange
V = 1014.66 (4) Å3 0.14 × 0.04 × 0.01 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 2326 independent reflections
Radiation source: fine-focus sealed tube 1774 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.062
T = 100(2) K θmax = 27.5º
φ and ω scans θmin = 2.0º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996) h = −12→13
Tmin = 0.851, Tmax = 0.988 k = −6→6
12357 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081   w = 1/[σ2(Fo2) + (0.0362P)2 + 0.5143P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2326 reflections Δρmax = 0.43 e Å3
154 parameters Δρmin = −0.30 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.5000 0.5000 0.01261 (12)
S1 0.33444 (6) 0.74950 (12) 0.45463 (3) 0.01747 (15)
N1 0.6654 (2) 1.1528 (4) 0.78929 (11) 0.0171 (5)
H1N 0.637 (3) 1.262 (5) 0.8165 (14) 0.045 (10)*
N2 0.52205 (19) 0.6972 (4) 0.58664 (10) 0.0143 (4)
N3 0.42554 (19) 0.8723 (4) 0.59419 (10) 0.0153 (4)
N4 0.2345 (2) 1.0700 (4) 0.53342 (12) 0.0205 (5)
H4N1 0.240 (3) 1.177 (5) 0.5691 (12) 0.042 (10)*
H4N2 0.184 (3) 1.121 (6) 0.4919 (10) 0.043 (10)*
C1 0.7786 (2) 0.8186 (5) 0.76257 (12) 0.0154 (5)
C2 0.8845 (2) 0.6471 (5) 0.77478 (13) 0.0182 (5)
H2 0.8869 0.5159 0.7410 0.022*
C3 0.9859 (2) 0.6731 (5) 0.83732 (13) 0.0195 (5)
H3 1.0588 0.5590 0.8460 0.023*
C4 0.9830 (2) 0.8646 (5) 0.88809 (13) 0.0190 (5)
H4 1.0538 0.8766 0.9306 0.023*
C5 0.8795 (2) 1.0361 (5) 0.87760 (12) 0.0178 (5)
H5 0.8774 1.1659 0.9118 0.021*
C6 0.7782 (2) 1.0092 (5) 0.81421 (12) 0.0159 (5)
C7 0.5945 (2) 1.0621 (5) 0.72458 (12) 0.0166 (5)
H7 0.5132 1.1309 0.6969 0.020*
C8 0.6586 (2) 0.8537 (5) 0.70493 (12) 0.0166 (5)
C9 0.6276 (2) 0.6972 (5) 0.64112 (12) 0.0163 (5)
H9 0.6935 0.5761 0.6381 0.020*
C10 0.3354 (2) 0.9073 (5) 0.53374 (13) 0.0159 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0129 (2) 0.0143 (2) 0.0104 (2) 0.00022 (19) 0.00260 (16) −0.00047 (18)
S1 0.0180 (3) 0.0207 (3) 0.0124 (3) 0.0042 (3) 0.0014 (2) −0.0010 (2)
N1 0.0177 (11) 0.0189 (11) 0.0140 (10) 0.0007 (9) 0.0029 (8) −0.0039 (9)
N2 0.0161 (10) 0.0141 (10) 0.0127 (9) 0.0014 (8) 0.0036 (8) −0.0004 (8)
N3 0.0155 (11) 0.0171 (11) 0.0137 (10) 0.0021 (9) 0.0047 (8) −0.0002 (8)
N4 0.0225 (12) 0.0210 (12) 0.0172 (11) 0.0080 (9) 0.0035 (9) −0.0025 (9)
C1 0.0156 (12) 0.0156 (12) 0.0151 (11) −0.0034 (10) 0.0042 (10) 0.0002 (9)
C2 0.0190 (13) 0.0192 (13) 0.0177 (12) −0.0019 (10) 0.0068 (10) −0.0025 (10)
C3 0.0153 (13) 0.0225 (14) 0.0205 (12) 0.0005 (11) 0.0040 (10) 0.0028 (11)
C4 0.0166 (13) 0.0245 (14) 0.0148 (11) −0.0037 (11) 0.0018 (10) −0.0005 (10)
C5 0.0196 (13) 0.0207 (14) 0.0127 (11) −0.0040 (11) 0.0034 (10) −0.0005 (10)
C6 0.0172 (12) 0.0167 (12) 0.0151 (11) −0.0011 (11) 0.0063 (9) 0.0013 (10)
C7 0.0166 (12) 0.0190 (14) 0.0137 (11) −0.0016 (10) 0.0030 (10) −0.0003 (9)
C8 0.0191 (13) 0.0177 (13) 0.0135 (11) −0.0022 (10) 0.0051 (10) 0.0001 (10)
C9 0.0175 (12) 0.0176 (13) 0.0145 (11) 0.0008 (10) 0.0055 (10) 0.0003 (10)
C10 0.0180 (13) 0.0140 (12) 0.0182 (12) −0.0033 (10) 0.0092 (10) 0.0007 (10)

Geometric parameters (Å, °)

Ni1—N2i 1.919 (2) C1—C6 1.408 (3)
Ni1—N2 1.918 (2) C1—C8 1.453 (3)
Ni1—S1i 2.1669 (6) C2—C3 1.386 (3)
Ni1—S1 2.1669 (6) C2—H2 0.9500
S1—C10 1.723 (2) C3—C4 1.404 (4)
N1—C7 1.355 (3) C3—H3 0.9500
N1—C6 1.377 (3) C4—C5 1.382 (4)
N1—H1n 0.88 (3) C4—H4 0.9500
N2—C9 1.309 (3) C5—C6 1.397 (3)
N2—N3 1.399 (3) C5—H5 0.9500
N3—C10 1.303 (3) C7—C8 1.385 (3)
N4—C10 1.355 (3) C7—H7 0.9500
N4—H4n1 0.88 (3) C8—C9 1.438 (3)
N4—H4n2 0.88 (3) C9—H9 0.9500
C1—C2 1.400 (3)
N2i—Ni1—N2 180.000 (1) C2—C3—H3 119.3
N2i—Ni1—S1i 85.72 (6) C4—C3—H3 119.3
N2—Ni1—S1 85.72 (6) C5—C4—C3 121.5 (2)
N2—Ni1—S1i 94.28 (6) C5—C4—H4 119.3
N2i—Ni1—S1 94.28 (6) C3—C4—H4 119.3
S1i—Ni1—S1 180.0 C4—C5—C6 116.8 (2)
C10—S1—Ni1 96.63 (9) C4—C5—H5 121.6
C7—N1—C6 110.0 (2) C6—C5—H5 121.6
C7—N1—H1N 126 (2) N1—C6—C5 129.5 (2)
C6—N1—H1N 123 (2) N1—C6—C1 107.7 (2)
C9—N2—N3 113.60 (19) C5—C6—C1 122.9 (2)
C9—N2—Ni1 125.30 (17) N1—C7—C8 109.7 (2)
N3—N2—Ni1 120.96 (14) N1—C7—H7 125.1
C10—N3—N2 112.16 (19) C8—C7—H7 125.1
C10—N4—H4N1 121 (2) C7—C8—C9 131.6 (2)
C10—N4—H4N2 119 (2) C7—C8—C1 106.1 (2)
H4N1—N4—H4N2 114 (3) C9—C8—C1 122.2 (2)
C2—C1—C6 119.1 (2) N2—C9—C8 129.5 (2)
C2—C1—C8 134.4 (2) N2—C9—H9 115.3
C6—C1—C8 106.5 (2) C8—C9—H9 115.3
C3—C2—C1 118.5 (2) N3—C10—N4 118.5 (2)
C3—C2—H2 120.8 N3—C10—S1 123.44 (19)
C1—C2—H2 120.8 N4—C10—S1 118.03 (18)
C2—C3—C4 121.3 (2)
N2i—Ni1—S1—C10 172.73 (10) C8—C1—C6—N1 −0.4 (3)
N2—Ni1—S1—C10 −7.27 (10) C2—C1—C6—C5 0.1 (4)
S1i—Ni1—N2—C9 15.3 (2) C8—C1—C6—C5 −179.6 (2)
S1—Ni1—N2—C9 −164.7 (2) C6—N1—C7—C8 0.3 (3)
S1i—Ni1—N2—N3 −169.40 (16) N1—C7—C8—C9 −177.4 (2)
S1—Ni1—N2—N3 10.60 (16) N1—C7—C8—C1 −0.5 (3)
C9—N2—N3—C10 166.4 (2) C2—C1—C8—C7 −179.1 (3)
Ni1—N2—N3—C10 −9.4 (3) C6—C1—C8—C7 0.6 (3)
C6—C1—C2—C3 −0.5 (4) C2—C1—C8—C9 −1.8 (4)
C8—C1—C2—C3 179.2 (3) C6—C1—C8—C9 177.8 (2)
C1—C2—C3—C4 0.6 (4) N3—N2—C9—C8 −2.0 (4)
C2—C3—C4—C5 −0.4 (4) Ni1—N2—C9—C8 173.7 (2)
C3—C4—C5—C6 0.1 (4) C7—C8—C9—N2 −7.0 (5)
C7—N1—C6—C5 179.2 (2) C1—C8—C9—N2 176.5 (2)
C7—N1—C6—C1 0.1 (3) N2—N3—C10—N4 179.1 (2)
C4—C5—C6—N1 −178.9 (2) N2—N3—C10—S1 1.4 (3)
C4—C5—C6—C1 0.1 (4) Ni1—S1—C10—N3 5.4 (2)
C2—C1—C6—N1 179.3 (2) Ni1—S1—C10—N4 −172.37 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1n···N3ii 0.88 (3) 2.06 (2) 2.876 (3) 155 (3)

Symmetry codes: (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2241).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst.36, 1283–1284.
  4. Husain, K., Abid, M. & Azam, A. (2007). Eur. J. Med. Chem.42, 1300–1308. [DOI] [PubMed]
  5. Rizal, R. M., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o919–o920. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2008). publCIF In preparation.
  9. Wilson, B. A., Venkatraman, R., Whitaker, C. & Tillison, Q. (2005). Int. J. Env. Res. Pub. Health, 2, 170–174. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014293/sg2241sup1.cif

e-64-0m824-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014293/sg2241Isup2.hkl

e-64-0m824-Isup2.hkl (114.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES