Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 30;64(Pt 6):m847. doi: 10.1107/S1600536808015523

Aqua­(2-hydrazino-1,10-phenanthroline)nitratocopper(II) nitrate

Hong Liang Li a,*, Qi Sheng Liu b
PMCID: PMC2961415  PMID: 21202525

Abstract

In the title mononuclear complex, [Cu(NO3)(C12H10N4)(H2O)]NO3, the CuII ion assumes a distorted square-pyramidal geometry. There is a π–π stacking inter­action between the five-membered ring containing the Cu atom and a pyridine ring of a neighboring complex [centroid–centroid distance = 3.567 (2) Å and a perpendicular distance of 3.394 Å]. The crystal structure also contains inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, linking cations and anions. In addition, there is a short inter­molecular contact [2.784 (6) Å] between an O atom of the coordinated nitrate group and its symmetry-related atom.

Related literature

For related structures, see: Liu et al. (2008); Lewis et al. (1980).graphic file with name e-64-0m847-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)(C12H10N4)(H2O)]NO3

  • M r = 415.82

  • Monoclinic, Inline graphic

  • a = 8.7175 (8) Å

  • b = 10.7746 (10) Å

  • c = 16.4725 (16) Å

  • β = 97.175 (2)°

  • V = 1535.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 298 (2) K

  • 0.50 × 0.20 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.525, T max = 0.843

  • 8857 measured reflections

  • 3329 independent reflections

  • 2735 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.112

  • S = 1.03

  • 3329 reflections

  • 235 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015523/wn2264sup1.cif

e-64-0m847-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015523/wn2264Isup2.hkl

e-64-0m847-Isup2.hkl (163.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.18 2.936 (4) 146
N1—H1⋯O7i 0.86 2.54 3.181 (4) 132
N2—H2A⋯O3ii 0.90 2.22 3.111 (4) 169
N2—H2B⋯O7iii 0.90 2.17 3.055 (4) 168
O1—H9⋯O5iii 0.84 1.98 2.818 (3) 175
O1—H9⋯O7iii 0.84 2.58 3.185 (3) 130
O1—H13⋯O6iv 0.85 1.99 2.821 (3) 167
C2—H2⋯O6i 0.93 2.56 3.253 (4) 132
C3—H3⋯O1v 0.93 2.48 3.280 (4) 144
C11—H11⋯O4vi 0.93 2.43 3.118 (5) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu et al., 2008), and although complexes with 2,9-dihydrazino-1,10-phenanthroline as ligand have been published (Lewis et al., 1980), to the best of our knowledge, no crystal structure of the title complex has been published.

Fig. 1 shows the structure, revealing that the Cu atom is in a distorted square-pyramidal environment, with atom O1 in the apical position. There is a single π-π stacking interaction involving symmetry-related 1,10-phenanthroline ligands, the relevant distances being Cg1···Cg2v = 3.567 (2) Å and Cg1···Cg2vperp = 3.394 Å and α = 3.76° [symmetry code: (v) -x, 1 - y, -z; Cg1 and Cg2 are the centroids of the Cu1/N5/N6/C8/C9 ring and N6/C7/C8/C10-C12 ring, respectively; Cg1···Cg21perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between ring plane Cg1 and ring plane Cg2i]. There exists a short contact [2.784 (6) Å] between atom O3 and its symmetry-related atom O3ii [symmetry code: (ii) 1-x,-y,-z], as shown in Fig. 2 (double dashed lines). In addition, the crystal structure contains classical N—H..O and O—H···O hydrogen bonds, also non-classical C—H···O hydrogen bonds, as shown in Table 1 and Fig. 2. The π-π stacking interaction, the short contact between atom O3 and its symmetry-related atom O3ii and the hydrogen bonds stabilize the crystal structure.

Experimental

10 ml methanol solution of 2-hydrazino-1,10-phenanthroline (0.0105 g, 0.0576 mmol) was added to 5 ml aqueous solution of Cu(NO3)2.3H2O (0.0390 g, 0.161 mmol) and the mixture was stirred for a few minutes. Deep-green single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement

Oxygen-bound H atoms were located in a difference Fourier map, then placed in calculated positions with O—H = 0.84 and 0.85 Å and refined as riding with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 and 0.90 Å, and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the packing in the crystal structure. Short contacts between atom O3 and its symmetry-related atoms are shown as double dashed lines and hydrogen bonds as dashed lines.

Crystal data

[Cu(NO3)(C12H10N4)(H2O)]NO3 F000 = 844
Mr = 415.82 Dx = 1.799 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2442 reflections
a = 8.7175 (8) Å θ = 2.3–24.6º
b = 10.7746 (10) Å µ = 1.48 mm1
c = 16.4725 (16) Å T = 298 (2) K
β = 97.175 (2)º Block, green
V = 1535.1 (2) Å3 0.50 × 0.20 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 3329 independent reflections
Radiation source: fine-focus sealed tube 2735 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.034
T = 298(2) K θmax = 27.0º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.525, Tmax = 0.843 k = −13→13
8857 measured reflections l = −12→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.112   w = 1/[σ2(Fo2) + (0.058P)2 + 0.4576P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
3329 reflections Δρmax = 0.70 e Å3
235 parameters Δρmin = −0.33 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1553 (4) 0.3275 (3) −0.07122 (17) 0.0395 (7)
C2 0.0545 (4) 0.3975 (3) −0.12818 (19) 0.0478 (8)
H2 −0.0080 0.3581 −0.1704 0.057*
C3 0.0507 (4) 0.5226 (3) −0.1201 (2) 0.0492 (8)
H3 −0.0159 0.5689 −0.1568 0.059*
C4 0.1460 (4) 0.5839 (3) −0.05691 (19) 0.0441 (8)
C5 0.1525 (5) 0.7152 (3) −0.0411 (2) 0.0539 (9)
H5 0.0886 0.7683 −0.0745 0.065*
C6 0.2498 (4) 0.7624 (3) 0.0215 (2) 0.0541 (9)
H6 0.2504 0.8477 0.0302 0.065*
C7 0.3518 (4) 0.6866 (3) 0.0746 (2) 0.0459 (8)
C8 0.3481 (3) 0.5572 (3) 0.06060 (17) 0.0377 (7)
C9 0.2440 (3) 0.5098 (3) −0.00470 (18) 0.0364 (6)
C10 0.5401 (4) 0.5172 (3) 0.1667 (2) 0.0462 (8)
H10 0.6058 0.4620 0.1974 0.055*
C11 0.5497 (4) 0.6440 (3) 0.1859 (2) 0.0550 (9)
H11 0.6190 0.6713 0.2297 0.066*
C12 0.4578 (5) 0.7272 (3) 0.1405 (2) 0.0548 (9)
H12 0.4653 0.8113 0.1533 0.066*
Cu1 0.37741 (4) 0.29261 (3) 0.06801 (2) 0.03598 (14)
N1 0.1698 (3) 0.2036 (2) −0.07207 (16) 0.0478 (7)
H1 0.1211 0.1587 −0.1101 0.057*
N2 0.2703 (3) 0.1510 (2) −0.00644 (15) 0.0432 (6)
H2A 0.3427 0.1045 −0.0265 0.052*
H2B 0.2160 0.1014 0.0235 0.052*
N3 0.5836 (3) 0.1007 (3) 0.13379 (17) 0.0499 (7)
N4 0.8613 (3) 0.0304 (2) 0.83090 (17) 0.0472 (7)
N5 0.2458 (3) 0.3843 (2) −0.01228 (14) 0.0362 (5)
N6 0.4397 (3) 0.4735 (2) 0.10578 (15) 0.0376 (5)
O1 0.2264 (3) 0.27432 (18) 0.16726 (12) 0.0440 (5)
H9 0.2273 0.1980 0.1784 0.066*
H13 0.2717 0.3128 0.2083 0.066*
O2 0.5464 (3) 0.21509 (19) 0.13917 (15) 0.0516 (6)
O3 0.5139 (4) 0.0349 (2) 0.08196 (18) 0.0770 (9)
O4 0.6890 (4) 0.0598 (3) 0.1787 (2) 0.1068 (13)
O5 0.7508 (3) −0.0211 (2) 0.79020 (18) 0.0735 (8)
O6 0.9063 (3) 0.1324 (2) 0.80827 (14) 0.0610 (7)
O7 0.9290 (3) −0.0178 (2) 0.89371 (16) 0.0627 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0392 (17) 0.0383 (16) 0.0423 (17) 0.0019 (13) 0.0106 (13) 0.0020 (13)
C2 0.0441 (19) 0.052 (2) 0.0457 (18) 0.0053 (15) 0.0008 (14) 0.0062 (15)
C3 0.0418 (19) 0.057 (2) 0.0492 (19) 0.0118 (16) 0.0085 (15) 0.0152 (16)
C4 0.0469 (19) 0.0369 (16) 0.0527 (19) 0.0104 (14) 0.0224 (15) 0.0106 (13)
C5 0.063 (2) 0.0395 (18) 0.062 (2) 0.0131 (16) 0.0210 (18) 0.0150 (16)
C6 0.071 (3) 0.0282 (16) 0.069 (2) 0.0072 (16) 0.034 (2) 0.0047 (15)
C7 0.058 (2) 0.0293 (15) 0.056 (2) −0.0025 (14) 0.0284 (17) −0.0018 (13)
C8 0.0413 (17) 0.0320 (15) 0.0436 (16) −0.0005 (12) 0.0199 (13) 0.0007 (12)
C9 0.0404 (17) 0.0297 (14) 0.0416 (16) 0.0044 (12) 0.0149 (13) 0.0045 (12)
C10 0.0457 (19) 0.0491 (18) 0.0451 (17) −0.0050 (15) 0.0115 (14) −0.0034 (14)
C11 0.060 (2) 0.054 (2) 0.053 (2) −0.0171 (18) 0.0127 (17) −0.0129 (17)
C12 0.070 (3) 0.0332 (17) 0.066 (2) −0.0128 (16) 0.0264 (19) −0.0120 (15)
Cu1 0.0392 (2) 0.0291 (2) 0.0397 (2) 0.00421 (14) 0.00535 (15) 0.00074 (14)
N1 0.0554 (17) 0.0373 (14) 0.0479 (16) 0.0027 (12) −0.0051 (13) −0.0059 (11)
N2 0.0515 (17) 0.0317 (13) 0.0464 (14) 0.0037 (11) 0.0065 (12) −0.0001 (11)
N3 0.0537 (18) 0.0477 (16) 0.0474 (15) 0.0124 (14) 0.0022 (13) 0.0019 (13)
N4 0.0568 (18) 0.0386 (14) 0.0483 (16) 0.0009 (13) 0.0148 (13) 0.0022 (12)
N5 0.0394 (14) 0.0306 (12) 0.0390 (13) 0.0036 (10) 0.0061 (10) 0.0011 (10)
N6 0.0409 (14) 0.0326 (12) 0.0412 (13) −0.0001 (11) 0.0132 (11) −0.0014 (11)
O1 0.0505 (14) 0.0375 (11) 0.0447 (12) 0.0008 (9) 0.0091 (10) 0.0001 (9)
O2 0.0519 (15) 0.0406 (12) 0.0600 (14) 0.0120 (10) −0.0020 (11) −0.0063 (10)
O3 0.095 (2) 0.0483 (14) 0.0791 (19) 0.0180 (14) −0.0225 (16) −0.0118 (14)
O4 0.108 (3) 0.077 (2) 0.119 (3) 0.042 (2) −0.051 (2) −0.0025 (19)
O5 0.0673 (18) 0.0551 (15) 0.092 (2) −0.0193 (14) −0.0152 (15) 0.0131 (14)
O6 0.0885 (19) 0.0425 (13) 0.0500 (13) −0.0200 (13) 0.0008 (12) 0.0065 (11)
O7 0.0719 (18) 0.0546 (15) 0.0601 (15) 0.0045 (13) 0.0018 (13) 0.0167 (12)

Geometric parameters (Å, °)

C1—N5 1.322 (4) C11—C12 1.362 (5)
C1—N1 1.341 (4) C11—H11 0.9300
C1—C2 1.420 (4) C12—H12 0.9300
C2—C3 1.356 (5) Cu1—N5 1.914 (2)
C2—H2 0.9300 Cu1—O2 1.952 (2)
C3—C4 1.412 (5) Cu1—N6 2.097 (2)
C3—H3 0.9300 Cu1—N2 2.102 (2)
C4—C9 1.387 (4) Cu1—O1 2.232 (2)
C4—C5 1.437 (5) N1—N2 1.422 (3)
C5—C6 1.351 (5) N1—H1 0.8600
C5—H5 0.9300 N2—H2A 0.9000
C6—C7 1.425 (5) N2—H2B 0.9000
C6—H6 0.9300 N3—O4 1.190 (4)
C7—C12 1.405 (5) N3—O3 1.213 (4)
C7—C8 1.412 (4) N3—O2 1.280 (3)
C8—N6 1.363 (4) N4—O5 1.234 (3)
C8—C9 1.413 (4) N4—O7 1.239 (3)
C9—N5 1.358 (4) N4—O6 1.240 (3)
C10—N6 1.332 (4) O1—H9 0.8422
C10—C11 1.402 (5) O1—H13 0.8485
C10—H10 0.9300
N5—C1—N1 114.9 (3) N5—Cu1—O2 168.02 (11)
N5—C1—C2 120.2 (3) N5—Cu1—N6 80.55 (10)
N1—C1—C2 125.0 (3) O2—Cu1—N6 94.10 (9)
C3—C2—C1 118.9 (3) N5—Cu1—N2 77.72 (10)
C3—C2—H2 120.5 O2—Cu1—N2 106.66 (9)
C1—C2—H2 120.5 N6—Cu1—N2 158.07 (10)
C2—C3—C4 121.3 (3) N5—Cu1—O1 101.19 (9)
C2—C3—H3 119.4 O2—Cu1—O1 89.57 (10)
C4—C3—H3 119.4 N6—Cu1—O1 91.11 (8)
C9—C4—C3 116.6 (3) N2—Cu1—O1 95.94 (9)
C9—C4—C5 116.6 (3) C1—N1—N2 116.0 (2)
C3—C4—C5 126.9 (3) C1—N1—H1 122.0
C6—C5—C4 121.0 (3) N2—N1—H1 122.0
C6—C5—H5 119.5 N1—N2—Cu1 109.92 (17)
C4—C5—H5 119.5 N1—N2—H2A 109.7
C5—C6—C7 122.5 (3) Cu1—N2—H2A 109.7
C5—C6—H6 118.8 N1—N2—H2B 109.7
C7—C6—H6 118.8 Cu1—N2—H2B 109.7
C12—C7—C8 115.7 (3) H2A—N2—H2B 108.2
C12—C7—C6 126.6 (3) O4—N3—O3 120.0 (3)
C8—C7—C6 117.8 (3) O4—N3—O2 119.7 (3)
N6—C8—C7 124.3 (3) O3—N3—O2 120.2 (3)
N6—C8—C9 117.0 (3) O5—N4—O7 121.6 (3)
C7—C8—C9 118.7 (3) O5—N4—O6 119.3 (3)
N5—C9—C4 122.0 (3) O7—N4—O6 119.1 (3)
N5—C9—C8 114.6 (3) C1—N5—C9 121.1 (3)
C4—C9—C8 123.4 (3) C1—N5—Cu1 121.3 (2)
N6—C10—C11 121.9 (3) C9—N5—Cu1 117.6 (2)
N6—C10—H10 119.0 C10—N6—C8 117.6 (3)
C11—C10—H10 119.0 C10—N6—Cu1 132.3 (2)
C12—C11—C10 120.2 (3) C8—N6—Cu1 109.92 (19)
C12—C11—H11 119.9 Cu1—O1—H9 104.8
C10—C11—H11 119.9 Cu1—O1—H13 106.4
C11—C12—C7 120.2 (3) H9—O1—H13 108.2
C11—C12—H12 119.9 N3—O2—Cu1 123.3 (2)
C7—C12—H12 119.9
N5—C1—C2—C3 −1.2 (5) N1—C1—N5—Cu1 −3.2 (4)
N1—C1—C2—C3 179.7 (3) C2—C1—N5—Cu1 177.6 (2)
C1—C2—C3—C4 0.7 (5) C4—C9—N5—C1 1.2 (4)
C2—C3—C4—C9 0.7 (5) C8—C9—N5—C1 −179.4 (3)
C2—C3—C4—C5 −179.4 (3) C4—C9—N5—Cu1 −176.2 (2)
C9—C4—C5—C6 0.2 (5) C8—C9—N5—Cu1 3.2 (3)
C3—C4—C5—C6 −179.7 (3) O2—Cu1—N5—C1 113.5 (5)
C4—C5—C6—C7 0.5 (5) N6—Cu1—N5—C1 177.7 (2)
C5—C6—C7—C12 179.3 (3) N2—Cu1—N5—C1 0.7 (2)
C5—C6—C7—C8 −0.5 (5) O1—Cu1—N5—C1 −93.0 (2)
C12—C7—C8—N6 −0.5 (4) O2—Cu1—N5—C9 −69.0 (5)
C6—C7—C8—N6 179.3 (3) N6—Cu1—N5—C9 −4.8 (2)
C12—C7—C8—C9 180.0 (3) N2—Cu1—N5—C9 178.2 (2)
C6—C7—C8—C9 −0.2 (4) O1—Cu1—N5—C9 84.5 (2)
C3—C4—C9—N5 −1.7 (4) C11—C10—N6—C8 1.7 (5)
C5—C4—C9—N5 178.4 (3) C11—C10—N6—Cu1 −172.6 (2)
C3—C4—C9—C8 179.0 (3) C7—C8—N6—C10 −0.6 (4)
C5—C4—C9—C8 −0.9 (4) C9—C8—N6—C10 178.9 (3)
N6—C8—C9—N5 2.0 (4) C7—C8—N6—Cu1 174.9 (2)
C7—C8—C9—N5 −178.4 (3) C9—C8—N6—Cu1 −5.5 (3)
N6—C8—C9—C4 −178.6 (3) N5—Cu1—N6—C10 −179.9 (3)
C7—C8—C9—C4 0.9 (4) O2—Cu1—N6—C10 −10.7 (3)
N6—C10—C11—C12 −1.8 (5) N2—Cu1—N6—C10 −172.0 (3)
C10—C11—C12—C7 0.6 (5) O1—Cu1—N6—C10 79.0 (3)
C8—C7—C12—C11 0.5 (5) N5—Cu1—N6—C8 5.51 (18)
C6—C7—C12—C11 −179.3 (3) O2—Cu1—N6—C8 174.71 (19)
N5—C1—N1—N2 4.7 (4) N2—Cu1—N6—C8 13.3 (4)
C2—C1—N1—N2 −176.2 (3) O1—Cu1—N6—C8 −95.65 (19)
C1—N1—N2—Cu1 −4.0 (3) O4—N3—O2—Cu1 179.2 (3)
N5—Cu1—N2—N1 1.71 (19) O3—N3—O2—Cu1 0.9 (5)
O2—Cu1—N2—N1 −166.8 (2) N5—Cu1—O2—N3 −105.8 (5)
N6—Cu1—N2—N1 −6.2 (4) N6—Cu1—O2—N3 −168.8 (3)
O1—Cu1—N2—N1 101.9 (2) N2—Cu1—O2—N3 4.1 (3)
N1—C1—N5—C9 179.4 (3) O1—Cu1—O2—N3 100.2 (3)
C2—C1—N5—C9 0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6i 0.86 2.18 2.936 (4) 146
N1—H1···O7i 0.86 2.54 3.181 (4) 132
N2—H2A···O3ii 0.90 2.22 3.111 (4) 169
N2—H2B···O7iii 0.90 2.17 3.055 (4) 168
O1—H9···O5iii 0.84 1.98 2.818 (3) 175
O1—H9···O7iii 0.84 2.58 3.185 (3) 130
O1—H13···O6iv 0.85 1.99 2.821 (3) 167
C2—H2···O6i 0.93 2.56 3.253 (4) 132
C3—H3···O1v 0.93 2.48 3.280 (4) 144
C11—H11···O4vi 0.93 2.43 3.118 (5) 131

Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y, −z; (iii) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z−1/2; (v) −x, −y+1, −z; (vi) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2264).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lewis, J. & O’Donoghue, T. D. (1980). J. Chem. Soc. Dalton Trans. pp. 736–742.
  3. Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015523/wn2264sup1.cif

e-64-0m847-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015523/wn2264Isup2.hkl

e-64-0m847-Isup2.hkl (163.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES