Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Aug;94(2):649–654. doi: 10.1172/JCI117381

Differential effects of metalloporphyrins on messenger RNA levels of delta-aminolevulinate synthase and heme oxygenase. Studies in cultured chick embryo liver cells.

E E Cable 1, J A Pepe 1, N C Karamitsios 1, R W Lambrecht 1, H L Bonkovsky 1
PMCID: PMC296142  PMID: 8040318

Abstract

The acute porphyrias in relapse are commonly treated with intravenous heme infusion to decrease the activity of delta-aminolevulinic acid synthase, normally the rate-controlling enzyme in heme biosynthesis. The biochemical effects of heme treatment are short-lived, probably due in part to heme-mediated induction of heme oxygenase, the rate-controlling enzyme for heme degradation. In this work, selected nonheme metalloporphyrins were screened for their ability to reduce delta-aminolevulinic acid synthase mRNA and induce heme oxygenase mRNA in chick embryo liver cell cultures. Of the metalloporphyrins tested, only zinc-mesoporphyrin reduced delta-aminolevulinic acid synthase mRNA without increasing heme oxygenase mRNA. The combination of zinc-mesoporphyrin and heme, at nanomolar concentrations, decreased delta-aminolevulinic acid synthase mRNA in a dose-dependent manner. The combination of zinc-mesoporphyrin (50 nM) and heme (200 nM) decreased the half-life of the mRNA for delta-aminolevulinic acid synthase from 5.2 to 2.5 h, while a similar decrease was produced by heme (10 microM) alone (2.2 h). The ability of zinc-mesoporphyrin to supplement the reduction of delta-aminolevulinic acid synthase mRNA by heme, in a process similar to that observed with heme alone, provides a rationale for further investigation of this compound for eventual use as a supplement to heme therapy of the acute porphyrias and perhaps other conditions in which heme may be of benefit.

Full text

PDF
649

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham N. G., Chertkov J. L., Staudinger R., Jiang S., Lutton J. D., Argani I., Levere R. D., Kappas A. Long-term bone marrow stromal and hemopoietic toxicity to AZT: protective role of heme and IL-1. Exp Hematol. 1993 Feb;21(2):263–268. [PubMed] [Google Scholar]
  2. Ades I. Z., Harpe K. G. Biogenesis of mitochondrial proteins. Identification of the mature and precursor forms of the subunit of delta-aminolevulinate synthase from embryonic chick liver. J Biol Chem. 1981 Sep 10;256(17):9329–9333. [PubMed] [Google Scholar]
  3. Bonkovsky H. L. Advances in understanding and treating 'the little imitator,' acute porphyria. Gastroenterology. 1993 Aug;105(2):590–594. doi: 10.1016/0016-5085(93)90739-y. [DOI] [PubMed] [Google Scholar]
  4. Bonkovsky H. L., Cable E. E., Cable J. W., Donohue S. E., White E. C., Greene Y. J., Lambrecht R. W., Srivastava K. K., Arnold W. N. Porphyrogenic properties of the terpenes camphor, pinene, and thujone (with a note on historic implications for absinthe and the illness of Vincent van Gogh). Biochem Pharmacol. 1992 Jun 9;43(11):2359–2368. doi: 10.1016/0006-2952(92)90314-9. [DOI] [PubMed] [Google Scholar]
  5. Bonkovsky H. L., Healey J. F., Lourie A. N., Gerron G. G. Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol. 1991 Aug;86(8):1050–1056. [PubMed] [Google Scholar]
  6. Bonkovsky H. L., Healey J. F., Sinclair P. R., Sinclair J. F. Conversion of 5-aminolaevulinate into haem by homogenates of human liver. Comparison with rat and chick-embryo liver homogenates. Biochem J. 1985 May 1;227(3):893–901. doi: 10.1042/bj2270893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonkowsky H. L., Tschudy D. P., Collins A., Doherty J., Bossenmaier I., Cardinal R., Watson C. J. Repression of the overproduction of porphyrin precursors in acute intermittent porphyria by intravenous infusions of hematin. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2725–2729. doi: 10.1073/pnas.68.11.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cable E. E., Cable J. W., Bonkovsky H. L. Repression of hepatic delta-aminolevulinate synthase by heme and metalloporphyrins: relationship to inhibition of heme oxygenase. Hepatology. 1993 Jul;18(1):119–127. [PubMed] [Google Scholar]
  9. Cable E. E., Healey J. F., Greene Y., Evans C. O., Bonkovsky H. L. Synergistic induction of delta-aminolevulinate synthase by glutethimide and iron: relationship to the synergistic induction of heme oxygenase. Biochim Biophys Acta. 1991 Nov 15;1080(3):245–251. doi: 10.1016/0167-4838(91)90009-o. [DOI] [PubMed] [Google Scholar]
  10. Cable E., Greene Y., Healey J., Evans C. O., Bonkovsky H. Mechanism of synergistic induction of hepatic heme oxygenase by glutethimide and iron: studies in cultured chick embryo liver cells. Biochem Biophys Res Commun. 1990 Apr 16;168(1):176–181. doi: 10.1016/0006-291x(90)91690-t. [DOI] [PubMed] [Google Scholar]
  11. Dhar G. J., Bossenmaier I., Cardinal R., Petryka Z. J., Watson C. J. Transitory renal failure following rapid administration of a relatively large amount of hematin in a patient with acute intermittent porphyria in clinical remission. Acta Med Scand. 1978;203(5):437–443. doi: 10.1111/j.0954-6820.1978.tb14903.x. [DOI] [PubMed] [Google Scholar]
  12. Dover S. B., Graham A., Fitzsimons E., Moore M. R., McColl K. E. Haem-arginate plus tin-protoporphyrin for acute hepatic porphyria. Lancet. 1991 Jul 27;338(8761):263–263. doi: 10.1016/0140-6736(91)90411-h. [DOI] [PubMed] [Google Scholar]
  13. Dover S. B., Moore M. R., Fitzsimmons E. J., Graham A., McColl K. E. Tin protoporphyrin prolongs the biochemical remission produced by heme arginate in acute hepatic porphyria. Gastroenterology. 1993 Aug;105(2):500–506. doi: 10.1016/0016-5085(93)90726-s. [DOI] [PubMed] [Google Scholar]
  14. Drew P. D., Ades I. Z. Regulation of the stability of chicken embryo liver delta-aminolevulinate synthase mRNA by hemin. Biochem Biophys Res Commun. 1989 Jul 14;162(1):102–107. doi: 10.1016/0006-291x(89)91968-2. [DOI] [PubMed] [Google Scholar]
  15. Drummond G. S., Galbraith R. A., Sardana M. K., Kappas A. Reduction of the C2 and C4 vinyl groups of Sn-protoporphyrin to form Sn-mesoporphyrin markedly enhances the ability of the metalloporphyrin to inhibit in vivo heme catabolism. Arch Biochem Biophys. 1987 May 15;255(1):64–74. doi: 10.1016/0003-9861(87)90294-3. [DOI] [PubMed] [Google Scholar]
  16. Drummond G. S., Greenbaum N. L., Kappas A. Tin(Sn+4)-diiododeuteroporphyrin; an in vitro and in vivo inhibitor of heme oxygenase with substantially reduced photoactive properties. J Pharmacol Exp Ther. 1991 Jun;257(3):1109–1113. [PubMed] [Google Scholar]
  17. Drummond G. S., Kappas A. Chemoprevention of neonatal jaundice: potency of tin-protoporphyrin in an animal model. Science. 1982 Sep 24;217(4566):1250–1252. doi: 10.1126/science.6896768. [DOI] [PubMed] [Google Scholar]
  18. Drummond G. S., Kappas A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6466–6470. doi: 10.1073/pnas.78.10.6466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Drummond G. S., Kappas A. Sn-protoporphyrin inhibition of fetal and neonatal brain heme oxygenase. Transplacental passage of the metalloporphyrin and prenatal suppression of hyperbilirubinemia in the newborn animal. J Clin Invest. 1986 Mar;77(3):971–976. doi: 10.1172/JCI112398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Galbraith R. A., Drummond G. S., Kappas A. Sn-protoporphyrin suppresses chemically induced experimental hepatic porphyria. Potential clinical implications. J Clin Invest. 1985 Dec;76(6):2436–2439. doi: 10.1172/JCI112259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goetsch C. A., Bissell D. M. Instability of hematin used in the treatment of acute hepatic porphyria. N Engl J Med. 1986 Jul 24;315(4):235–238. doi: 10.1056/NEJM198607243150406. [DOI] [PubMed] [Google Scholar]
  22. Granick S., Sinclair P., Sassa S., Grieninger G. Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J Biol Chem. 1975 Dec 25;250(24):9215–9225. [PubMed] [Google Scholar]
  23. Granick S. The induction in vitro of the synthesis of delta-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals. J Biol Chem. 1966 Mar 25;241(6):1359–1375. [PubMed] [Google Scholar]
  24. Hamilton J. W., Bement W. J., Sinclair P. R., Sinclair J. F., Alcedo J. A., Wetterhahn K. E. Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch Biochem Biophys. 1991 Sep;289(2):387–392. doi: 10.1016/0003-9861(91)90428-l. [DOI] [PubMed] [Google Scholar]
  25. Healey J. F., Bonkowsky H. L., Sinclair P. R., Sinclair J. F. Conversion of 5-aminolaevulinate into haem by liver homogenates. Comparison of rat and chick embryo. Biochem J. 1981 Sep 15;198(3):595–604. doi: 10.1042/bj1980595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hintz S. R., Vreman H. J., Stevenson D. K. Mortality of metalloporphyrin-treated neonatal rats after light exposure. Dev Pharmacol Ther. 1990;14(3):187–192. [PubMed] [Google Scholar]
  27. Hollander M. C., Fornace A. J., Jr Estimation of relative mRNA content by filter hybridization to a polythymidylate probe. Biotechniques. 1990 Aug;9(2):174–179. [PubMed] [Google Scholar]
  28. Khanderia U. Circulatory collapse associated with hemin therapy for acute intermittent porphyria. Clin Pharm. 1986 Aug;5(8):690–692. [PubMed] [Google Scholar]
  29. Lamola A. A., Piomelli S., Poh-Fitzpatrick M. G., Yamane T., Harber L. C. Erythropoietic protoporphyria and lead intoxication: the molecular basis for difference in cutaneous photosensitivity. II. Different binding of erythrocyte protoporphyrin to hemoglobin. J Clin Invest. 1975 Dec;56(6):1528–1535. doi: 10.1172/JCI108234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lamola A. A., Yamane T. Zinc protoporphyrin in the erythrocytes of patients with lead intoxication and iron deficiency anemia. Science. 1974 Dec 6;186(4167):936–938. doi: 10.1126/science.186.4167.936. [DOI] [PubMed] [Google Scholar]
  31. Lamon J. M., Frykholm B. C., Bennett M., Tschudy D. P. Prevention of acute porphyric attacks by intravenous haematin. Lancet. 1978 Sep 2;2(8088):492–494. doi: 10.1016/s0140-6736(78)92217-1. [DOI] [PubMed] [Google Scholar]
  32. Lamon J. M., Frykholm B. C., Hess R. A., Tschudy D. P. Hematin therapy for acute porphyria. Medicine (Baltimore) 1979 May;58(3):252–269. doi: 10.1097/00005792-197905000-00005. [DOI] [PubMed] [Google Scholar]
  33. Land E. J., McDonagh A. F., McGarvey D. J., Truscott T. G. Photophysical studies of tin(IV)-protoporphyrin: potential phototoxicity of a chemotherapeutic agent proposed for the prevention of neonatal jaundice. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5249–5253. doi: 10.1073/pnas.85.14.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lathrop J. T., Timko M. P. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science. 1993 Jan 22;259(5094):522–525. doi: 10.1126/science.8424176. [DOI] [PubMed] [Google Scholar]
  35. Levere R. D., Gong Y. F., Kappas A., Bucher D. J., Wormser G. P., Abraham N. G. Heme inhibits human immunodeficiency virus 1 replication in cell cultures and enhances the antiviral effect of zidovudine. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1756–1759. doi: 10.1073/pnas.88.5.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Levere R. D., Martasek P., Escalante B., Schwartzman M. L., Abraham N. G. Effect of heme arginate administration on blood pressure in spontaneously hypertensive rats. J Clin Invest. 1990 Jul;86(1):213–219. doi: 10.1172/JCI114686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lincoln B. C., Healey J. F., Bonkovsky H. L. Regulation of hepatic haem metabolism. Disparate mechanisms of induction of haem oxygenase by drugs and metals. Biochem J. 1988 Feb 15;250(1):189–196. doi: 10.1042/bj2500189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mark J. A., Maines M. D. Tin-protoporphyrin-mediated disruption in vivo of heme oxygenase-2 protein integrity and activity in rat brain. Pediatr Res. 1992 Sep;32(3):324–329. doi: 10.1203/00006450-199209000-00016. [DOI] [PubMed] [Google Scholar]
  39. May B. K., Bawden M. J. Control of heme biosynthesis in animals. Semin Hematol. 1989 Apr;26(2):150–156. [PubMed] [Google Scholar]
  40. Morris D. L., Dudley M. D., Pearson R. D. Coagulopathy associated with hematin treatment for acute intermittent porphyria. Ann Intern Med. 1981 Dec;95(6):700–701. doi: 10.7326/0003-4819-95-6-700. [DOI] [PubMed] [Google Scholar]
  41. Mustajoki P., Nordmann Y. Early administration of heme arginate for acute porphyric attacks. Arch Intern Med. 1993 Sep 13;153(17):2004–2008. [PubMed] [Google Scholar]
  42. Mustajoki P., Tenhunen R., Pierach C., Volin L. Heme in the treatment of porphyrias and hematological disorders. Semin Hematol. 1989 Jan;26(1):1–9. [PubMed] [Google Scholar]
  43. Mustajoki P., Tenhunen R., Tokola O., Gothoni G. Haem arginate in the treatment of acute hepatic porphyrias. Br Med J (Clin Res Ed) 1986 Aug 30;293(6546):538–539. doi: 10.1136/bmj.293.6546.538-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Petersen J. M., Pierach C. A. Hematin-induced hemolysis in acute porphyria. Ann Intern Med. 1984 Dec;101(6):877–878. doi: 10.7326/0003-4819-101-6-877_2. [DOI] [PubMed] [Google Scholar]
  45. Riddle R. D., Yamamoto M., Engel J. D. Expression of delta-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci U S A. 1989 Feb;86(3):792–796. doi: 10.1073/pnas.86.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sardana M. K., Kappas A. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2464–2468. doi: 10.1073/pnas.84.8.2464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sassa S., Granick S. Induction of -aminolevulinic acid synthetase in chick embryo liver cells in cluture. Proc Natl Acad Sci U S A. 1970 Oct;67(2):517–522. doi: 10.1073/pnas.67.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schoenfeld N., Wysenbeek A. J., Greenblat Y., Epstein O., Atsmon A., Tschudy D. P. The effects of metalloporphyrins, porphyrins and metals on the activity of delta-aminolevulinic acid synthase in monolayers of chick embryo liver cells. Biochem Pharmacol. 1984 Sep 1;33(17):2783–2788. doi: 10.1016/0006-2952(84)90696-8. [DOI] [PubMed] [Google Scholar]
  49. Simionatto C. S., Cabal R., Jones R. L., Galbraith R. A. Thrombophlebitis and disturbed hemostasis following administration of intravenous hematin in normal volunteers. Am J Med. 1988 Oct;85(4):538–540. doi: 10.1016/s0002-9343(88)80092-5. [DOI] [PubMed] [Google Scholar]
  50. Sinclair P. R., Granick S. Heme control on the synthesis of delta-aminolevulinic acid synthetase in cultured chick embryo liver cells. Ann N Y Acad Sci. 1975 Apr 15;244:509–520. doi: 10.1111/j.1749-6632.1975.tb41551.x. [DOI] [PubMed] [Google Scholar]
  51. Smith A., Alam J., Escriba P. V., Morgan W. T. Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin. J Biol Chem. 1993 Apr 5;268(10):7365–7371. [PubMed] [Google Scholar]
  52. Srivastava G., Brooker J. D., May B. K., Elliott W. H. Haem control in experimental porphyria. The effect of haemin on the induction of delta-aminolaevulinate synthase in isolated chick-embryo liver cells. Biochem J. 1980 Jun 15;188(3):781–788. doi: 10.1042/bj1880781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Srivastava K. K., Cable E. E., Donohue S. E., Bonkovsky H. L. Molecular basis for heme-dependent induction of heme oxygenase in primary cultures of chick embryo hepatocytes. Demonstration of acquired refractoriness to heme. Eur J Biochem. 1993 May 1;213(3):909–917. doi: 10.1111/j.1432-1033.1993.tb17835.x. [DOI] [PubMed] [Google Scholar]
  54. TSCHUDY D. P., PERLROTH M. G., MARVER H. S., COLLINS A., HUNTER G., Jr, RECHCIGL M., Jr ACUTE INTERMITTENT PORPHYRIA: THE FIRST "OVERPRODUCTION DISEASE" LOCALIZED TO A SPECIFIC ENZYME. Proc Natl Acad Sci U S A. 1965 Apr;53:841–847. doi: 10.1073/pnas.53.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tenhunen R., Tokola O., Lindén I. B. Haem arginate: a new stable haem compound. J Pharm Pharmacol. 1987 Oct;39(10):780–786. doi: 10.1111/j.2042-7158.1987.tb05119.x. [DOI] [PubMed] [Google Scholar]
  56. Tokola O., Lindén I. B., Tenhunen R. The effects of haem arginate and haematin upon the allylisopropylacetamide induced experimental porphyria in rats. Pharmacol Toxicol. 1987 Jul;61(1):75–78. doi: 10.1111/j.1600-0773.1987.tb01778.x. [DOI] [PubMed] [Google Scholar]
  57. Volin L. Haem arginate treatment for hereditary sideroblastic anaemia. Eur J Haematol. 1989 Jan;42(1):60–66. doi: 10.1111/j.1600-0609.1989.tb00248.x. [DOI] [PubMed] [Google Scholar]
  58. Vreman H. J., Ekstrand B. C., Stevenson D. K. Selection of metalloporphyrin heme oxygenase inhibitors based on potency and photoreactivity. Pediatr Res. 1993 Feb;33(2):195–200. doi: 10.1203/00006450-199302000-00021. [DOI] [PubMed] [Google Scholar]
  59. Vreman H. J., Hintz S. R., Kim C. B., Castillo R. O., Stevenson D. K. Effects of oral administration of tin and zinc protoporphyrin on neonatal and adult rat tissue heme oxygenase activity. J Pediatr Gastroenterol Nutr. 1988 Nov-Dec;7(6):902–906. doi: 10.1097/00005176-198811000-00019. [DOI] [PubMed] [Google Scholar]
  60. Vreman H. J., Lee O. K., Stevenson D. K. In vitro and in vivo characteristics of a heme oxygenase inhibitor: ZnBG. Am J Med Sci. 1991 Dec;302(6):335–341. doi: 10.1097/00000441-199112000-00002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES